

Final

Feasibility Study Report Addendum Operable Unit 2B Installation Restoration Sites 3, 4, 11, and 21

ALAMEDA POINT ALAMEDA, CALIFORNIA

October 2012

Prepared for: Base Realignment and Closure Program Management Office West San Diego, California

Prepared under:

Contract Number N62473-08-D-8814 Contract Task Order 0002

DCN: OTIE-8814-0002-0003.A1/F

Final

Feasibility Study Report Addendum Operable Unit 2B Installation Restoration Sites 3, 4, 11, and 21

ALAMEDA POINT ALAMEDA, CALIFORNIA

October 2012

Prepared for: Base Realignment and Closure Program Management Office West San Diego, California

Prepared by: Oneida Total Integrated Enterprises LLC 2247 San Diego Avenue, Suite 238 San Diego, California 92110

Prepared under:

Contract Number N62473-08-D-8814 Contract Task Order 0002

DCN: OTIE-8814-0002-0003.A1/F

APPROVAL PAGE

Final Feasibility Study Report Addendum Operable Unit 2B IR Sites 3, 4, 11, and 21 Alameda Point Alameda, California

Contract Number N62473-08-D-8814 Contract Task Order 0002 DCN: OTIE-8814-0002-0003.A1/F

Prepared by: Oneida Total Integrated Enterprises LLC 2247 San Diego Avenue, Suite 238 San Diego, California 92110

Reviews and Approvals:

Crispin Wanyøike, PE C049847 Project Manager AECOM

Date: ____10 2 2012

Thomas Mulder, PG Project Manager Oneida Total Integrated Enterprises LLC

Date: 10/02/2012

CONTENTS

APPROVAL PAGE						
ACRONYMS AND ABBREVIATIONS	v					
1. INTRODUCTION	1-1					
1.1 Organization of the Report	1-1					
2. EVALUATION OF THE NOVEMBER 2011 UNITED STATES ENVIORNMENTAL PROTECTION AGENCY REGIONAL SCREENING LEVELS	2-1					
2.1 Comparison of May 2009 and November 2011 RSLs2.2 Evaluation of Updated Toxicity Criteria	2-1 2-2					
3. GROUNDWATER FS EVALUATION – COMMERCIAL REUSE AND NON-DRINKING WATER BENEFICIAL USE	3-1					
4. REFERENCES	4-1					
APPENDICES						
A Groundwater FS Evaluation – Commercial Reuse and Non-Drinking Water						

B Responses to Comments on the Draft Feasibility Study Addendum

TABLES

Beneficial Use

Table 1: Comparison of May 2009 and November 2011 EPA Tapwater RSLs

Table 2: Comparison of Constituents Whose November 2011 EPA Tapwater RSLs changed from May 2009

Table 3: Remediation Goals - OU-2B Groundwater

ACRONYMS AND ABBREVIATIONS

§	section							
µg/L	micrograms per liter							
$\mu g/m^3$	micrograms per cubic meter							
ARAR	applicable or relevant and appropriate requirement							
CERCLA	Comprehensive Environmental Response, Compensation, and							
	Liability Act							
C.F.R.	Code of Federal Regulations							
cis-1,2-DCE	cis-1,2-dichloroethene							
COC	constituent of concern							
CTR	California Toxics Rule							
EPC	exposure point concentration							
FS	feasibility study							
GRA	general response action							
HHRA	human-health risk assessment							
IR	Installation Restoration							
MCL	maximum contaminant level							
mg/m ³	milligrams per cubic meter							
mg/kg-day	milligrams per kilogram per day							
NAVFAC SW	Naval Facilities Engineering Command Southwest							
NCP	National Oil and Hazardous Substances Pollution							
	Contingency Plan							
NTR	National Toxics Rule							
OU	operable unit							
RAO	remedial action objective							
RBC	risk-based concentration							
RfC _i	inhalation reference concentration							
RfD _o	oral reference dose							
RSL	Regional Screening Level							
SARA	Superfund Amendments and Reauthorization Act							
TCE	trichloroethene							
USEPA	U.S. Environmental Protection Agency							
VC	vinyl chloride							

1. INTRODUCTION

This report is an addendum to the Final Feasibility Study (FS) Report (OTIE 2011a) for Operable Unit-2B (OU-2B), which includes Installation Restoration (IR) Sites 3, 4, 11, and 21 located at Alameda Point, Alameda, California. Based on regulatory agency comments on the Draft Final FS (OTIE 2011b), this FS addendum presents the following:

- A comparison of the updated November 2011 United States Environmental Protection Agency (USEPA) tap water regional screening levels (RSLs) (USEPA 2011a) with the May 2009 RSLs (USEPA 2009), and an evaluation of potential impacts to the Final OU-2B FS groundwater constituent of concern (COC) selection, response action alternatives, and risk-based concentration (RBC) calculations from RSL and associated toxicity value changes.
- An additional OU-2B groundwater FS evaluation for a scenario in which groundwater beneath OU-2B is not classified as a potential drinking water source and reuse of OU-2B area is restricted to commercial use.

This Report was prepared for the Base Realignment and Closure, Program Management Office West and the Naval Facilities Engineering Command Southwest (NAVFAC SW) as authorized by the United States Navy, under contract number N62473-08-D-8814. It complies with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) in 40 Code of Federal Regulations, Part 300.

1.1 ORGANIZATION OF THE REPORT

This Report has been organized into the following sections:

- Section 1: Introduction This section presents the purpose for the FS addendum, and organization of the Report.
- Section 2: Evaluation of the November 2011 USEPA RSLs This section presents a comparison of the May 2009 RSLs to the most current November 2011 RSLs that incorporate the updated toxicity factors, and an evaluation of their effect on the groundwater COC selection, the groundwater response action alternatives, and calculated RBCs.
- Section 3: Groundwater FS Evaluation Commercial Reuse and Non-Drinking Water Beneficial Use- This section presents an overview of Appendix A that includes details of the development and analysis of remedial alternatives assuming a Commercial Reuse and Non-Drinking Water Beneficial Use of groundwater at OU-2B sites.
- Appendix B Response to Comments on the Draft FS Addendum. Based on regulatory comments received on the Draft FS Addendum, technical exchange meetings were held to discuss the groundwater modeling approach and the efficacy of the monitored natural attenuation. A summary of the items discussed along with a supplemental evaluation have been included in Appendix B of this FS Addendum.

2. EVALUATION OF THE NOVEMBER 2011 UNITED STATES ENVIORNMENTAL PROTECTION AGENCY REGIONAL SCREENING LEVELS

2.1 COMPARISON OF MAY 2009 AND NOVEMBER 2011 RSLs

The Final OU-2B FS used the May 2009 tapwater RSLs and associated toxicity criteria for the evaluation of COC selection, response action alternatives development, and calculation of RBCs. Since the RSLs and toxicity values have been updated since May 2009, a comparison of the May 2009 RSLs to the November 2011 RSLs was performed to assess if changes in the RSL would impact the COC selection, the remedial action alternative development, or the calculation of RBCs. A similar evaluation performed for soil (May 2009 RSLs vs. June 2011 RSLs) is presented in Appendix J of the Final OU-2B FS (OTIE 2011a). Therefore the current evaluation focused on constituents/analytes reported in groundwater within OU-2B and is presented in Table 1. This table summarizes the comparison of the two RSLs for analytes reported during previous environmental investigations at OU-2B and makes a determination as to whether a detailed evaluation is warranted. The more detailed evaluation of constituents for which May 2009 RSLs are different from November 2011 RSLs is presented in Table 2 and is based on the following approach:

- 1. The exposure point concentrations (EPCs) of the analytes were compared to November 2011 RSLs.
- 2. If the analyte EPC (organic and inorganic) was less than its November 2011 RSL, then the evaluation presented in Final OU-2B FS remained valid. These analytes are presented in unhighlighted rows of Table 2.
- 3. If the analyte EPC was greater than its November 2011 RSL, then the chemical was further evaluated in Table 2 as described below:
 - Inorganic Constituents/Metals: All metals reported in OU-2B groundwater with EPCs greater than their respective November 2011 RSLs are already selected as secondary COCs in the Final OU-2B FS. The proposed cleanup goals for these metals for OU-2B groundwater are either their respective background values or maximum contaminant levels (MCLs). Therefore, changes in RSLs did not add any new metal to the COC list or impact remedial alternatives evaluated in the Final OU-2B FS.
 - Organic Constituents: Each organic constituent with an EPC greater than November 2011 RSL was evaluated separately in Table 2 to determine if, (1) any new COC needs to be added, (2) there are any impacts on the remedial alternatives scope developed/evaluated in the Final OU-2B FS, or (3) there are potential impacts to the RBCs presented in the Final OU-2B FS. Based on this evaluation, changes in RSLs did not add any reported organic analyte to the list of COCs or impact remedial alternatives evaluated in the Final OU-2B FS, except 1,4-dioxane which will be added to the list of secondary COCs (along with metals) for the case in which groundwater is considered a potential drinking water source. The secondary COCs will be monitored if the groundwater remedial action for OU-2B is selected based on OU-2B groundwater being considered a potential drinking water source. Since a significant component of 1,4dioxane risk is attributed to groundwater ingestion; 1,4-dioxane is not a COC for the commercial reuse scenario where OU-2B groundwater is not considered a potential drinking water source. Additionally, changes in the toxicity factors inherent to RSL changes resulted in revised residential indoor air RBCs for trichloroethene (TCE), vinyl chloride (VC) and cis-1,2-dichloroethene (cis-1,2-DCE) (changes in the commercial indoor RBCs are presented in Appendix A). As a result, the TCE residential RBC changed from 27.2 μ g/L (micrograms per liter) to 5.1 μ g/L, the vinyl chloride RBC changed from 3.2 µg/L to 1.3 µg/L, and the cis-1,2-DCE RBC changed from 2011 µg/L to 402 µg/L, respectively (see Tables 2 and 3). An evaluation of how the changes in the RBC affect the remedial action scope and cost was performed. This evaluation

concluded that based on the known distribution of VOCs and the distribution of monitoring points, there is no discernable difference in the VOC footprint requiring remediation. Consequently, the estimated remediation timeframes for attaining the revised RBCs are not expected to be significantly different than the timeframes presented in the Final OU-2B FS for cleanup to higher RBCs. In fact, the updated TCE RBC is equivalent to the TCE MCL of 5 μ g/L. The remediation timeframes presented in the Final OU-2B FS were estimated using MCL based remediation goals which are less than these RBCs.

Based on this updated RSLs evaluation, no new constituents have been selected as primary groundwater COCs in this FS Addendum. The indoor air RBCs for TCE, VC, and cis-1,2-DCE have been updated; however, no changes are required to the scope, cost, or the estimated remediation time-frames for groundwater remedial alternatives developed in the Final OU-2B FS or their detailed/comparative evaluation.

2.2 EVALUATION OF UPDATED TOXICITY CRITERIA

A comprehensive evaluation of the impact of November 2011 RSLs and associated toxicity criteria on groundwater COC selection, response action alternatives development, and RBCs documented in the Final OU-2B FS is presented in Section 2.1. This section presents detailed evaluation of updated toxicity criteria for cis-1,2-DCE, VC, and TCE.

The oral reference dose (RfD_o) for cis-1,2-DCE was revised from 1 x 10^{-2} milligrams per kilogram per day (mg/kg-day) to 2.0 x 10^{-3} mg/kg-day in November 2011. Based on this, the extrapolated non-cancer inhalation reference concentration (RfC_i) for cis-1,2-DCE changed from 3.5 x 10^{-2} milligrams per cubic meter (mg/m³) to 7 x 10^{-3} mg/m³. The revised residential indoor air RBC for cis-1,2-DCE based on the updated toxicity value is presented in Table 3.

The toxicity values for VC reported in November 2011 RSL table did not change from those reported in the May 2009 RSL table. However, the residential indoor air RBC for VC has been revised in this FS Addendum in accordance with the USEPA guidance (USEPA 2011b) considering VC's designation as a mutagen (see Table 3).

In September 2011, USEPA issued a final health assessment for TCE which revised both the cancer risk and non-cancer hazard toxicity values. The inhalation unit risk was revised from 2.0 x 10^{-6} per micrograms per cubic meter (μ g/m³) to 4.1 x 10^{-6} per μ g/m³. In addition, the new non-cancer inhalation reference concentration (RfC_i) was set at 2 x 10^{-3} mg/m³, while the FS human-health risk assessment (HHRA) used an estimated value of 0.6 mg/m³ for the vapor intrusion risk based on California's Office of Environmental Health Hazard Assessment database. As a result, the estimated risks for TCE presented in the Final FS are less than risk based on the updated toxicity factors. The designation of TCE as a mutagenic compound also affects the risk calculated for unrestricted exposure scenarios including residential. Based on the updated toxicity values for TCE, the calculated carcinogenic risk associated with TCE in groundwater for Exposure Group 2 (see Section 2 of Appendix B of the Final FS for definition) would increase from 1.2 x 10^{-4} to 6.3 x 10^{-4} , while the non-cancer hazard quotient would increase from 0.23 to 70.

The total groundwater cancer risk for Exposure Group 2 as a result of changes in the TCE toxicity values would change from 2×10^{-4} to 7×10^{-4} and the non-cancer hazard index would change from 1 to 71. While there are changes to the TCE risk, these changes do not affect the decisions made based on risk, namely whether or not TCE is a COC. The TCE risks presented in the Final FS provide adequate justification for the need to develop response action alternatives. However, the revised toxicity factors affect the basis for evaluating the post remedy risk and the calculated RBCs. With respect to the basis

October 2012	Final Feasibility Study Addendum OU-2B, Alameda Point	Evaluation of the November 2011 RSLs

for the response action scope (remediation footprint), the updated RBCs do not significantly alter the scope, cost, or estimated remediation time-frames for groundwater remedial alternatives developed in the Final OU-2B FS or their detailed/comparative evaluation since the MCLs (proposed remediation goals for OU-2B groundwater) are less than these RBCs. In addition, since the updated TCE (primary OU-2B groundwater COC) indoor air RBC is essentially equivalent to the MCL, the FS evaluation in the Final OU-2B FS also applies to the scenario of residential reuse of OU-2B with groundwater not a potential drinking water source.

October 2012

3. GROUNDWATER FS EVALUATION – COMMERCIAL REUSE AND NON-DRINKING WATER BENEFICIAL USE

Appendix A of this FS Addendum presents an additional FS analysis (i.e. development and evaluation of remedial alternatives) for groundwater at OU-2B. The FS analysis presented in the Final OU-2B FS document (OTIE 2011a) is based on the classification of groundwater beneath OU-2B as a Class II aquifer, a potential source of drinking water. The additional evaluation in this FS Addendum for OU-2B groundwater assumes the following:

- 1. Groundwater beneath OU-2B is not considered a potential drinking water source, and
- 2. The reuse of OU-2B area is restricted to commercial use (i.e. no residential reuse of OU-2B area).

This evaluation is intended to provide risk managers with a detailed evaluation to be considered if groundwater is excepted from domestic use and reuse is limited to commercial. The following bullet items summarize the approach used in Appendix A for the additional FS analysis:

- The remedial action objectives (RAOs) presented in the Final OU-2B FS were revised consistent with the assumptions that groundwater beneath OU-2B is not a potential drinking water source and the reuse of OU-2B area will be restricted to commercial use. The revised RAOs, COCs, and remediation goals are presented in Section 2 of Appendix A. The revised RAOs are based on the protection of potential receptors from exposure to COC vapors from groundwater at concentrations presenting unacceptable risks and potential discharge into the Seaplane lagoon. The COCs were selected based on the following two criteria: (1) potential human health risks due to intrusion of VOC vapors from groundwater into indoor air, and (2) comparison of concentrations of VOCs and metals with concentrations based on the Federal Water Quality Criteria at Title 40 Code of Federal Regulations, Sections 131.36 and 131.38 (referred to as the National Toxics Rule [NTR] and the California Toxics Rule [CTR]) (potential ARARs for discharge of OU-2B groundwater and their respective RGs are presented in Sections 2.2 and 2.4 of Appendix A. The RBCs for protection against unacceptable indoor air risks under a commercial use scenario were calculated and are presented in Appendix A.
- Based on the updated RAOs, an evaluation of whether the general response actions (GRAs) and target remediation zones for impacted groundwater presented in the Final OU-2B FS needed revisions was performed. This evaluation indicated that no revision to the GRAs was necessary; however, the target remediation zones would need revision. A discussion of the revised target remediation zones is presented in Section 2.5 of Appendix A.
- Based on the GRAs and updated target remediation zones, an evaluation was performed to assess whether the revisions to the identification and evaluation of remediation technologies, and process options presented in the Final OU-2B FS were necessary. This evaluation indicated that no revisions to identification and evaluation technologies and process options were needed.
- Based on the revised RAOs and revised target remediation zones, an evaluation was performed to assess if the remedial alternatives presented in the Final OU-2B FS needed revision. This evaluation indicated that some remedial alternatives needed minor revisions. The revised remedial alternatives are presented in Section 3 of Appendix A.
- The updated remedial action alternatives were evaluated based on the nine evaluation criteria identified in the NCP (Title 40 Code of Federal Regulations [C.F.R.] Section [§] 300.430 [e][9][iii]). This detailed alternative evaluation is presented in Section 4 of Appendix A.

Appendix A also includes updated evaluation of applicable or relevant and appropriate requirements (ARARs), and updated remedial action costs.

4. REFERENCES

OTIE. 2011a. Final Feasibility Study Report for Operable Unit (OU) 2B Installation Restoration Sites 3, 4, 11, and 21, Alameda Point. Alameda, California. December.

.2011b. Draft Final Feasibility Study Report for Operable Unit (OU) 2B Installation Restoration Sites 3, 4, 11, and 21, Alameda Point. Alameda, California. October.

United States Environmental Protection Agency (USEPA). 2009. Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites. May.

.2011a. Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites. November.

.2011b. User's Guide (November 2011), Regional Screening Levels. http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/usersguide.htm. November.

Tables

Table 1: Comparison of May	2009 and Nove		FA Tapwater	
			Are the 2009	
	2009 EPA	2011 EPA	and 2011	
	Tapwater RSL ^b	Tapwater	RSLs	
Analyte ^a	(µg/L)	RSL ^c (µg/L)	Different	Notes
Aluminum, dissolved	37000	16000	YES	Please see Table 2 for further evaluation.
Antimony, dissolved	15	6	YES	Please see Table 2 for further evaluation.
Arsenic, dissolved	0.045	0.045	NO	No change in the RSL, therefore no further evaluation required
Barium, dissolved	7300	2900	YES	Please see Table 2 for further evaluation.
Beryllium, dissolved	73	16	YES	Please see Table 2 for further evaluation.
Cadmium, dissolved	18	6.9	YES	Please see Table 2 for further evaluation.
Calcium, dissolved	NE	NE	NO	No RSL issued in 2009 and 2011, therefore no further evaluation required.
Chromium, dissolved	NE	NE	NO	No RSL issued in 2009 and 2011, therefore no further evaluation required.
Chromium, hexavalent	110	0.031	YES	Please see Table 2 for further evaluation.
Cobalt, dissolved	11	4.7	YES	Please see Table 2 for further evaluation.
Copper, dissolved	1500	620	YES	Please see Table 2 for further evaluation.
Iron, dissolved	26000	11000	YES	Please see Table 2 for further evaluation.
Lead, dissolved	28000 NE	NE	NO	No RSL issued in 2009 and 2011, therefore no further evaluation required.
Magnesium, dissolved	NE	NE	NO	No RSL issued in 2009 and 2011, therefore no further evaluation required.
	880	320	YES	Please see Table 2 for further evaluation.
Manganese, dissolved	0.57	0.63	YES	Please see Table 2 for further evaluation.
Mercury, dissolved	180	78	YES	
Molybdenum, dissolved	730	78 300	YES	Please see Table 2 for further evaluation.
Nickel, dissolved			_	Please see Table 2 for further evaluation.
Potassium, dissolved	NE	NE	NO	No RSL issued in 2009 and 2011, therefore no further evaluation required.
Selenium, dissolved	180	78	YES	Please see Table 2 for further evaluation.
Silver, dissolved	180	71	YES	Please see Table 2 for further evaluation.
Thallium, dissolved	NE	0.16	YES	Please see Table 2 for further evaluation.
Vanadium, dissolved	260	NE	YES	Please see Table 2 for further evaluation.
Zinc, dissolved	11000	4700	YES	Please see Table 2 for further evaluation.
Benzo(a)pyrene	0.0029	0.0029	NO	No change in the RSL, therefore no further evaluation required
Naphthalene	0.14	0.14	NO	No change in the RSL, therefore no further evaluation required
Heptachlor	0.015	0.0018	YES	Please see Table 2 for further evaluation.
1,4-Dioxane (P-Dioxane)	6.1	0.67	YES	Please see Table 2 for further evaluation.
Bis(2-Ethylhexyl) Phthalate	4.8	0.071	YES	Please see Table 2 for further evaluation.
Diethyl Phthalate	29000	11000	YES	Please see Table 2 for further evaluation.
1,1,1,2-Tetrachloroethane	0.52	0.5	YES	Please see Table 2 for further evaluation.
1,1,1-Trichloroethane	9100	7500	YES	Please see Table 2 for further evaluation.
1,1,2,2-Tetrachloroethane	0.067	0.066	YES	Please see Table 2 for further evaluation.
1,1,2-Trichloroethane	0.24	0.24	NO	No change in the RSL, therefore no further evaluation required
1,1-Dichloroethane	2.4	2.4	NO	No change in the RSL, therefore no further evaluation required
1,1-Dichloroethene	340	260	YES	Please see Table 2 for further evaluation.
1,2,3-Trichlorobenzene	NE	5.2	YES	Please see Table 2 for further evaluation.
1,2,4-Trichlorobenzene	8.2	0.99	YES	Please see Table 2 for further evaluation.
1,2,4-Trimethylbenzene	15	15	NO	No change in the RSL, therefore no further evaluation required
1,2-Dichlorobenzene	370	280	YES	Please see Table 2 for further evaluation.
1,2-Dichloroethane	0.15	0.15	NO	No change in the RSL, therefore no further evaluation required
1,3,5-Trimethylbenzene	12	87	YES	Please see Table 2 for further evaluation.

Table 1: Comparison of May 2009 and November 2011 EPA Tapwater RSLs (continued)

	2009 EPA	2011 EPA	Are the 2009	
		Tapwater	and 2011	
Analyte ^a	Tapwater RSL ^b (µg/L)	RSL ^c (µg/L)	RSLs Different	Notes
1,3-Dichlorobenzene	NE	NE	NO	No RSL issued in 2009 and 2011, therefore no further evaluation required.
1.4-Dichlorobenzene	0.43	0.42	YES	Please see Table 2 for further evaluation.
2-Butanone	7100	4900	YES	Please see Table 2 for further evaluation.
2-Chlorotoluene	730	180	YES	Please see Table 2 for further evaluation.
2-Chlorotoidene 2-Hexanone	NE	34	YES	Please see Table 2 for further evaluation.
4-Methyl-2-pentanone	2000	1000	YES	Please see Table 2 for further evaluation.
Acetone	2000	12000	YES	Please see Table 2 for further evaluation.
Benzene	0.41	0.39	YES	Please see Table 2 for further evaluation.
Bromodichloromethane	0.41		NO	
	-	0.12	YES	No change in the RSL, therefore no further evaluation required
Bromoform	8.5	7.9	YES	Please see Table 2 for further evaluation.
Bromomethane	8.7	7	-	Please see Table 2 for further evaluation.
Carbon disulfide	1000	720	YES	Please see Table 2 for further evaluation.
Chlorobenzene	91	72	YES	Please see Table 2 for further evaluation.
Chloroethane	21000	21000	NO	No change in the RSL, therefore no further evaluation required
Chloroform	0.19	0.19	NO	No change in the RSL, therefore no further evaluation required
Chloromethane	190	190	NO	No change in the RSL, therefore no further evaluation required
cis-1,2-Dichloroethene	370	28	YES	Please see Table 2 for further evaluation.
Dichlorodifluoromethane	390	190	YES	Please see Table 2 for further evaluation.
Ethylbenzene	1.5	1.3	YES	Please see Table 2 for further evaluation.
Hexachlorobutadiene	0.86	0.26	YES	Please see Table 2 for further evaluation.
Isopropyl Ether	830	1500	YES	Please see Table 2 for further evaluation.
Isopropylbenzene	680	390	YES	Please see Table 2 for further evaluation.
Methyl Tert-Butyl Ether	12	12	NO	No change in the RSL, therefore no further evaluation required
Methylene chloride	4.8	4.7	YES	Please see Table 2 for further evaluation.
N-Butylbenzene	NE	780	YES	Please see Table 2 for further evaluation.
N-Propylbenzene	NE	530	YES	Please see Table 2 for further evaluation.
o-Xylene	1400	190	YES	Please see Table 2 for further evaluation.
p-lsopropyltoluene	NE	NE	NO	No RSL issued in 2009 and 2011, therefore no further evaluation required.
Sec-Butylbenzene	NE	NE	NO	No RSL issued in 2009 and 2011, therefore no further evaluation required.
T-Butylbenzene	NE	NE	NO	No RSL issued in 2009 and 2011, therefore no further evaluation required.
Tert-Amyl Methyl Ether	NE	NE	NO	No RSL issued in 2009 and 2011, therefore no further evaluation required.
Tert-Butyl Alcohol	NE	NE	NO	No RSL issued in 2009 and 2011, therefore no further evaluation required.
Tetrachloroethene	0.11	0.072	YES	Please see Table 2 for further evaluation.
Toluene	2300	860	YES	Please see Table 2 for further evaluation.
trans-1,2-Dichloroethene	110	86	YES	Please see Table 2 for further evaluation.
Trichloroethene	1.7	0.44	YES	Please see Table 2 for further evaluation.
Trichlorofluoromethane	1300	1100	YES	Please see Table 2 for further evaluation.
Vinyl chloride	0.016	0.015	YES	Please see Table 2 for further evaluation.
Xylenes (total)	200	190	YES	Please see Table 2 for further evaluation.
Notos:				

Notes: ^a Analytes reported during prior investigations

^b RSLs issued by United States Environmental Protection Agency (USEPA) in May 2009.

^c RSLs issued by USEPA in November 2011.

NE = RSL does not exist.

Table 2: Comparison of Constituents Whose November 2011 EPA Tapwater RSLs changed from May 2009

able 2: Comparison of Con	stituents Who	ose November	2011 EPA Tapy	vater RSLs ch	nanged from N	lay 2009			
		Calculated EPC Value,	2009 EPA Tapwater RSL	2011 EPA Tapwater	Does the EPC Exceed the 2011 EPA Tapwater	ls it a Primary/ Secondary	Potential Impact to the Remedial Alternatives Evaluated in	Potential Impact to the	
Analyte	CAS	μg/L	(µg/L)	RSL (µg/L)	RSL	COC	the FS	RBCs	Remarks
Aluminum, dissolved	7429-90-5	34.29	37000	16000	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Antimony, dissolved	7440-36-0	1.905	15	6	NO	YES	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Barium, dissolved	7440-39-3	147.5	7300	2900	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Beryllium, dissolved	7440-41-7	0.438	73	16	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Cadmium, dissolved	7440-43-9	1.165	18	6.9	NO	YES	NO	YES	No change from the Final OU-2B FS. EPC is less than the 2011 RSL. No change from the Final OU-2B FS. The constituent was selected as a secondary COC in the Final FS and its RG for OU-2B
Chromium, hexavalent	18540-29-9	32.43	110	0.031	YES	YES	NO	NO	groundwater is MCL. No change from the Final OU-2B FS. The constituent was selected as a secondary COC in the Final FS and its RG for OU-2B oroundwater is background value.
Cobalt, dissolved	7440-48-4	21.41	11	4.7	YES	YES	NO	NO	
Copper, dissolved	7440-50-8	3.495	1500	620	NO	YES	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL. No change from the Final OU-2B FS. The constituent was selected as a secondary COC in the Final FS and its RG for OU-2B
Iron, dissolved	7439-89-6	18271	26000	11000	YES	YES	NO	NO	groundwater is background value. No change from the Final OU-2B FS. The constituent was selected as a secondary COC in the Final FS and its RG for OU-2B
Manganese, dissolved	7439-96-5	7704	880	320	YES	YES	NO	YES	groundwater is background value.
Mercury, dissolved	7439-97-6	0.0857	0.57	0.63	NO	YES	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Molybdenum, dissolved	7439-98-7	40.9	180	78	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Nickel, dissolved	7440-02-0	1447	730	300	YES	YES	NO	NO	No change from the Final OU-2B FS. The constituent was selected as a secondary COC in the Final FS and its RG for OU-2B groundwater is MCL.
Selenium, dissolved	7782-49-2	1.363	180	78	NO	YES	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Silver, dissolved	7440-22-4	1.574	180	71	NO	YES	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Thallium, dissolved	7440-28-0	1.672	NE	0.16	YES	YES	NO	NO	No change from the Final OU-2B FS. The constituent was selected as a secondary COC in the Final FS and its RG for OU-2B groundwater is background value.
Vanadium, dissolved	7440-20-0	7.426	260	NE	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Zinc, dissolved	7440-66-6	15.13	11000	4700	NO	YES	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Heptachlor	76-44-8	0.032	0.015	0.0018	YES	NO	NO	NO	No change from the Final OU-2B FS. The following rationale was presented for the exclusion of heptachlor as a COC in the Final FS which was detected in one of the five samples analyzed: "Heptachlor was detected at only one location (S4-B34) during data gap investigation (see Figure 28A of the FS) at a concentrations of 0.032 µg/L and 0.021 µg/L in the original and duplicate samples respectively, exceeding its MCL of 0.01 µg/L. Heptachlor was not detected above its MCL at any other sample analyzed for pesticides at OU-2B. Given the uncertainty in the quantitation and the very low concentrations, heptachlor was excluded from the list of COCs".
1,4-Dioxane (P-Dioxane)	123-91-1	127.6	6.1	0.67	YES	NO	NO	NO	Added to the list of secondary COCs for the case in which groundwater is considered a potential drinking water source.
									No change from the Final OU-2B FS. The following rationale was presented for exclusion of bis(2-ethylhexyl)phthalate as a COC in the Final FS: Bis(2-ethylhexyl)phthalate was detected at concentration (52 µg/L) exceeding its MCL (4 µg/L) in a sample collected below influent piping of former OWS-163 at only one location (S4-OWS163-INF). Soil was removed from this location in 2009 prior to ZVI treatability study in conjunction with removal of OWS-163 (Tetra Tech 2010b). Soil and groundwater samples were collected subsequent to the OWS-163 removal and soil excavation, and the results are presented on Figure 22 (Tetra Tech 2010a and Tetra Tech 2010b). Bis(2-ethylhexyl)phthalate was not reported above its screening levels (USEPA 2004 soil RSL or MCL) in any soil or groundwater sample collected within or in the vicinity of the excavated area. In addition to location mentioned above, bis(2-ethylhexyl)phthalate was reported in 4 liquid samples of the total of 28 liquid samples (10 content samples from OWS-163, 360, 372A, 14A, 14B, and 14D; and 18 groundwater samples) collected after 2002 (dataset
Bis(2-Ethylhexyl) Phthalate	117-81-7	3.003	4.8	0.071	YES	NO	NO	NO	considered to be representative of current groundwater conditions and used in the OU-2B FS). Of the total of 4 detections, 2 detections of bis(2-ethylhexyl)phthalate were in liquid samples from within OWS-360 and OWS-163, and two detections were in groundwater samples collected from location S11-B15 and S11-B19 located near Building 14 in IR Site 11. The two reported values of bis(2-ethylhexyl)phthalate in S11-B15 and S11-B19 were 2.8J and 2.4J µg/L, respectively, less than its MCL of 4 µg/L.
Diethyl Phthalate	84-66-2	11	29000	11000	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
1,1,1,2-Tetrachloroethane	630-20-6	0.28	0.52	0.5	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
1,1,1-Trichloroethane	71-55-6	1.314	9100	7500	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL. No change from the Final OU-2B FS. No significant change in the RSL. Only one sample was detected out of the 653 samples
1,1,2,2-Tetrachloroethane	79-34-5	1.5	0.067	0.066	YES	NO	NO	NO	analyzed. No change from the Final OU-2B FS. The constituent was selected as a groundwater COC in the Final FS and its RG for OU-2B groundwater is MCL. No change in the Residential RBC as the Inhalation Unit Risk Factor/Inhalation Reference Concentration did not change.
1,1-Dichloroethene	75-35-4	247.4	340	260	NO	YES	NO	NO	
1,2,3-Trichlorobenzene	87-61-6	0.978	NE	5.2	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.

Table 2: Comparison of Constituents Whose November 2011 EPA Tanwater RSLs changed from May 2009 (continued)

		Calculated	2009 EPA	2011 EPA	Does the EPC Exceed the 2011 EPA	ls it a Primary/	Potential Impact to the Remedial Alternatives	Potential	
		EPC Value,	Tapwater RSL	Tapwater	Tapwater	Secondary	Evaluated in	Impact to the	
Analyte	CAS	µg/L	(µg/L)	RSL (µg/L)	RSL	COC	the FS	RBCs	Remarks
1,2,4-Trichlorobenzene	120-82-1	1.072	8.2	0.99	YES	NO	NO	NO	No change from the Final OU-2B FS. The EPC is consistent with the 2011 EPA RSL.
1,2-Dichlorobenzene	95-50-1	24.82	370	280	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
1,3,5-Trimethylbenzene	108-67-8	0.358	12	87	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
1,4-Dichlorobenzene	106-46-7	3.515	0.43	0.42	YES	YES	NO	NO	No change from the Final OU-2B FS. No significant change in the RSL. Not identified as a vapor intrusion COPC for groundwater during risk assessment in the Final OU-2B FS.
2-Butanone	78-93-3	6.819	7100	4900	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
2-Chlorotoluene	95-49-8	4.9	730	180	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
2-Hexanone	591-78-6	2.437	NE	34	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
4-Methyl-2-pentanone	108-10-1	3.074	2000	1000	NO NO	NO NO	NO NO	NO NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Acetone	67-64-1	760.7	22000	12000	NO	NU	NU	NU	No change from the Final OU-2B FS. EPC is less than the 2011 RSL. No change from the Final OU-2B FS. No significant change in the RSL. No change in the Residential RBC as the Inhalation Unit Ris
Benzene	71-43-2	16.67	0.41	0.39	YES	YES	NO	NO	Factor/Inhalation Reference Concentration did not change.
Bromoform	75-25-2	0.7	8.5	7.9	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Bromomethane	74-83-9	0.253	8.7	7	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Carbon disulfide	75-15-0	0.547	1000	720	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
									No change from the Final OU-2B FS. No change in the Residential RBC as the Inhalation Unit Risk Factor/Inhalation Reference
Chlorobenzene	108-90-7	5.598	91	72	NO	YES	NO	NO	Concentration did not change.
cis-1,2-Dichloroethene	156-59-2	694.1	370	28	YES	YES	NO	YES	New RBC for cis-1,2-DCE for indoor air is 402 µg/L (previous RBC was 2011 µg/L).
Dichlorodifluoromethane	75-71-8	1.1	390	190	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Ethylbenzene	100-41-4	7.398	1.5	1.3	YES	NO	NO	NO	"Ethylbenzene exceeded its MCL of 300 μg/L at only one location (S3-HP07) during groundwater monitoring conducted as part of Supplemental DGI (Figure 28A). The concentration of ethylbenzene at this location was 550 μg/L. Ethylbenzene did not exceed its MCL in any of the remaining more than 600 groundwater samples collected and analyzed at OU-2B (see Table 12). Therefore, ethylbenzene was excluded from the list of COCs because of an isolated detection exceeding its MCL at only one hydropunch location".
Hexachlorobutadiene	87-68-3	0.4	0.86	0.26	YES	NO	NO	NO	No change from the Final OU-2B FS. Only one sample was detected out of the 542 samples analyzed. The risk thresholds (cancer and HI) are less than 1E-06 or 1 based on the maximum reported concentration for this constituent with the new toxicity criteria.
Isopropyl Ether	108-20-3	0.4	830	1500	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Isopropylbenzene	98-82-8	0.539	680	390	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Methylene chloride	75-09-2	3.645	4.8	4.7	NO	YES	NO	NO	No change from the Final OU-2B FS. No significant change in the RSL. No change in the Residential RBC as the Inhalation Unit R Factor/Inhalation Reference Concentration did not change.
N-Butylbenzene	104-51-8	0.408	NE	780	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
N-Propylbenzene	103-65-1	0.641	NE	530	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
o-Xylene	95-47-6	0.44	1400	190	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
Tetrachloroethene	127-18-4	0.619	0.11	0.072	YES	YES	NO	NO	No change from the Final OU-2B FS. No change in the Residential RBC as the Inhalation Unit Risk Factor/Inhalation Reference Concentration did not change.
Toluene	108-88-3	2.914	2300	860	NO	YES	NO	NO	No change from the Final OU-2B FS. Not identified as a vapor intrusion COPC for groundwater during risk assessment in the Fina 2B FS.
trans-1,2-Dichloroethene	156-60-5	24.07	110	86	NO	YES	NO	YES	No change from the Final OU-2B FS.No change in the Residential RBC as the Inhalation Unit Risk Factor/Inhalation Reference Concentration did not change.
Trichloroethene	79-01-6	3277	1.7	0.44	YES	YES	NO	YES	New residential RBC for TCE in indoor air is 5.1 µg/L (previous RBC was 27.2 µg/L).
Trichlorofluoromethane	75-69-4	0.356	1300	1100	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.
	75-01-4	103.1	0.016	0.015	YES	YES	NO	YES	New Residential RBC based on it being listed as a mutagenic is 1.3 µg/L (previous RBC was 3.2 µg/L).
Vinyl chloride		2.63	200	190	NO	NO	NO	NO	No change from the Final OU-2B FS. EPC is less than the 2011 RSL.

NE = RSL value does not exist OU = Operable unit RBC = risk-based concentration RG = remediation goal RSL = regional screening level TCE = trichloroethene

Table 3: Remediation Goals – OU-2B Groundwater

-	RBCs – Residential Use				Background Value (μg/L)	Selected Remediation	Selected Remediation Goal	Selected Remediation Goal				
	Inhalation - Indoor Air (μg/L)	Federal Primary	Federal MCLG (µg/L)	California MCL (µg/L)		on NTR ^d § 131.36		on CTR ^d R. § 131.38	-	Goal for OU-2B Groundwater ^c (μg/L)	for Protection Against Unacceptable Indoor	for Groundwater Discharge into Seaplane Lagoon
		MCL (μg/L) 40 C.F.R. § 141.61	40 C.F.R. § 141.50	Cal. Code Regs. tit. 22, §§ 64444 and 64449(a)	Potential Aquatic Receptor	Potential Human Receptor ^f	Potential Aquatic Receptor	Potential Human Receptor ^g	_		Air Risks(μg/L)	(μg/L)
					(μg/L)	(μg/L)	(μg/L)	(μg/L)				
PRIMARY COCs												
Benzene	11.3	5	0	1	^e	710	e	710	^e	1	11.3	710
cis-1,2-DCE	<mark>402</mark> (2011)*	70	70	6	^e	^c	e	e	^e	6	<mark>402</mark> (2011)*	e
trans-1,2-DCE	1592.48	100	100	10	^e	^c	^e	1,400,000	^e	10	1592.48	1,400,000
1,1-DCA				5	^e	^c	^e	e	^e	5		e
1,2-DCA	14.23	5	0	0.5	^e	990	^e	990	^e	0.5	14.23	990
1,4-Dichlorobenzene				5	^e	26,000	e	26,000	^e	5		26,000
1,1-DCE	1526.96	7	7	6	e	32	e	32	^e	6	1526.96	32
PCE	5.91	5	0	5	e	88.5	e	88.5	^e	5	5.91	88.5
TCE	<mark>5.1</mark> (27.2)*	5	0	5	e	810	e	810	^e	5	<mark>5.1</mark> (27.2)*	810
VC	<mark>1.3</mark> (3.2)*	2	0	0.5	e	5,250	e	5,250	^e	0.5	<mark>1.3</mark> (3.2)*	5,250
1,1,2-TCA		5	3	5	^e	420	^e	420	^e	3		420
Methylene Chloride	374.41			5	e	16,000	e	16,000	^e	5	374.41	16,000
Chlorobenzene	3472.19	100	100	70	^e	210,000	e	210,000	^e	70	3472.19	210,000
Toluene		1,000	1,000	150	^e	2,000,000	e	2,000,000	^e	150		2,000,000
Arsenic ^a		10	0	10	360 ^f	1.4	360 ^f	e	20.7	20.7 ^h		20.7
Antimony ^a		6	6	6	^e	43,000	^e	43,000	37.5	37.5 ^h		43,000
SECONDARY COCs												
Arsenic ^b		10	0	10	360 ^f	1.4	360 ^f	e	20.7	20.7 ^h		20.7
Cadmium		5	5	5	93	^e	93	e	3.9	5		93
Chromium		100	100	50	^e	^e	^e	e	12.5	50		
Chromium, hexavalent		100	100	50	500	^e	500	e	^e	50		500
Cobalt					^e	^e	^e	e	17.2	17.2		
Copper				1,000	24	^e	31	e	24.2	^k		24.2
Iron ^b				300	e	^e	e	e	6,585.5	6,585.5 ^h		
Lead ^j		15	0	15	81	^e	81	e	6.7	15		81
Manganese ^b				50	e	^e	e	e	1,741	1,741 ^h		
Mercury		2	2	2	0.25	1.5	^e	0.51	0.2	^k		0.25
Nickel ^b				100	82	46,000	82	46,000	21	100 ⁱ		82
Selenium		50	50	50	710	^e	710	e	8.4	^k		710
Silver				100	19	^e	19	e	4.9	^k		19
Thallium		0.5	2	2	^e	63	^e	63	13.8	13.8		63
Zinc				5,000	810	^e	810	e	36.4	^k		810
1,4-dioxane										^m		

Notes:

*The residential RBCs changed for the constituents highlighted in yellow. The RBCs for cis,-1,2-DCE and TCE were revised based on the new November 2011 RSLs. The revised RBCs for TCE and VC reflect classification of these two chemicals as mutagens. The values in parenthesis are previously estimated RBCs presented in the Final OU-2B FS (OTIE 2011a). 1,4-dioxane highlighted in yellow was added as a secondary COC based on the new November 2011 RSLs.

^a Primary COC only for the localized area north of Building 170. The groundwater remedy for elevated arsenic and antimony in the area north of Building 170 will be to remove the source as described in the soil alternatives to reduce groundwater impact with groundwater monitoring to confirm the response action effectiveness. Arsenic is also selected as a secondary COC in the areas other than the localized area north of Building 170 as explained in note b below. Antimony is not selected as a secondary COC since it was not reported at concentrations greater than its background value at location other than the area north of Building 170.

^b Secondary COC (Arsenic is a secondary COCs. However, metals monitoring has been made part of each remedial alternative for VOCs to assess whether their concentrations revert to background ranges once the VOC concentrations are reduced (see Section 5.1.2.2 for details).

^c For VOCs, least of the following values: Calculated RBCs, federal MCL, non-zero federal MCLG, and California MCL.

^dAssuming chemical is attenuated/diluted 10 times as it discharges into the lagoon.

^e Numerical criterion does not exist.

^fLesser of the criteria maximum concentration and criteria continuous concentration.

^g For consumption of organisms only.

^h The selected remediation goal represents the established background concentration for OU-2B. Background concentrations for the subject analytes are higher than their MCLs, and/or concentrations based on NTR/CTR.

The selected remediation goal is the California MCL.

^j Action level

^k The analyte did not exceed its MCL in groundwater investigations conducted from 2002 to Winter 2010, and is not a risk driver. Therefore, no remediation goal required for OU-2B groundwater.

^m The analyte has a California Department of Public Health notification level of 1 µg/L and a response level of 35 µg/L.

Appendix A Groundwater FS Evaluation – Commercial Reuse and Non-Drinking Water Beneficial Use

CONTENTS

Acr	conyms and abbreviations	iii
1.	Introduction	1
2.	Remedial Action Objectives	3
	 2.1 Potential Exposure Pathways 2.2 Constituents of Concern 2.2.1 Volatile Organic Compounds 2.2.2 Metals 	3 3 4 4
	 2.3 Applicable or Relevant and Appropriate 2.4 Remedial Action Objectives 2.4.1 Remediation Goals for OU-2B O 2.4.2 Remediation Goals for Discharg 	Requirements 4 4 Groundwater 5
	Lagoon 2.5 Target Remediation Zone 2.5.1 Vertical Extent 2.5.2 Horizontal Extent	5 5 5 6
3.	Remedial Action Alternatives	7
	3.1 Alternative GM-1: No Action3.2 Alternative GM-2: ISTT of Hot-Spots, C	7 Control/Treatment at
	the Seaplane Lagoon using PRB, MNA a 3.2.1 ISTT of Source Areas/Hot-Spots 3.2.2 Control/Treatment at the Seaplan 3.2.3 MNA and ICs	and ICs 7 s 7
	 3.3 Alternative GM-3: Hot-Spots Treatment Groundwater Treatment, Monitoring and 3.3.1 Hot-Spots Treatment 3.2 Shallow Groundwater Treatmen 3.3 ICs and Monitoring 3.4 Alternative GM-4: Treatment of Entire F 	t Cs 8 8 8 8 9 9 1 0 8 9 1 0 8 8 9 1 1 0 8 9 1 1 0 8 8 1 1 1 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8
4	Groundwater Recirculation, PRBs, and I	
4.	Detailed Analysis of Alternatives	11
5.	Applicable or Relevant and Appropriate Requirements	
6.	Cost Estimates	15
7.	References	17

ATTACHMENTS

Attachment A	Methodology	for	Calculation	of	Risk-Based	Groundwater
	Concentrations	- Cor	nmercial Use			

TABLES

Table 1: Comparison of VOC Concentrations (Group 1 Wells) with Concentrations Based on National Toxics Rule and California Toxics Rule

- Table 2: Comparison of Metal Concentrations (Group 1 Wells)a with Concentrations Based on National Toxics Rule and California Toxics Rule
- Table 3: Remediation Goals OU-2B Groundwater
- Table 4: Individual and Comparative Analysis of Remedial Alternatives OU-2B Groundwater
- Table 5: Summary of Assumptions for Cost Estimates
- Table 6: Summary of Present-Worth Costs

ACRONYMS AND ABBREVIATIONS

μg/L	micrograms per liter
ARARs	applicable or relevant and appropriate requirements
bgs	below ground surface
Cal. Code Regs.	California Code of Regulations
CTR	California Toxics Rule
CERCLA	Comprehensive Environmental Response, Compensation, and
	Liability Act
C.F.R.	Code of Federal Regulations
COPCs	chemicals of potential concern
COCs	constituents of concern
1,1-DCE	1,1-dichloroethene
FS	feasibility study
GRAs	general response actions
HI	hazard index
ICs	Institutional Controls
ISCO	in-situ chemical oxidation
ISTT	in-situ thermal treatment
MCLs	maximum contaminant levels
MCLG	maximum contaminant level goal
MNA	Monitored Natural Attenuation
NCP	National Oil and Hazardous Substances Pollution Contingency Plan
NTR	National Toxics Rule
OU-2B	Operable Unit-2B
PRB	permeable reactive barrier
§	Section
RAOs	remedial action objectives
RBCs	risk-based concentrations
RD/RA	remedial design/remedial action
RG	remediation goal
TCE	trichloroethene
tit.	title
U.S. EPA	United States Environmental Protection Agency
VC	vinyl chloride
VOC	volatile organic compound

ACRONYMS AND ABBREVIATIONS

1. Introduction

This appendix presents an additional feasibility study (FS) analysis (i.e. development and evaluation of remedial alternatives) for groundwater at Operable Unit-2B (OU-2B), Alameda Point, Alameda, California. The FS analysis presented in the Final OU-2B FS document (OTIE 2011) is based on the classification of groundwater beneath OU-2B as a Class II aquifer, a potential source of drinking water. This appendix presents an additional FS analysis for OU-2B groundwater for a scenario in which both of the following conditions are true:

- 1. Groundwater beneath OU-2B is not considered a potential drinking water source, and
- 2. The reuse of OU-2B area is restricted to commercial use (i.e. no residential reuse in areas overlying the plume where groundwater concentrations exceed vapor intrusion risk-based concentrations [RBCs])

The following bullet items summarize the approach used in this appendix for the additional FS analysis:

- The remedial action objectives (RAOs) presented in the Final OU-2B FS were revised consistent with the assumptions that groundwater beneath OU-2B is not a potential drinking water source and the reuse of OU-2B area will be restricted to commercial use. The revised RAOs are presented in Section 2 of this appendix.
- Based on the updated RAOs, an evaluation of whether the general response actions (GRAs) and target remediation zones for impacted groundwater presented in the Final OU-2B FS needed revisions was performed. This evaluation indicated that no revision to the GRAs was necessary; however, the target remediation zones would need revision. A discussion of the revised target remediation zones is presented in Section 2.5 of this appendix.
- Based on the GRAs and updated target remediation zones, an evaluation was performed to assess whether the revisions to the identification and evaluation of remediation technologies, and process options presented in the Final OU-2B FS were necessary. This evaluation indicated that no revisions to identification and evaluation of remediation technologies and process options were needed.
- Based on the revised RAOs and revised target remediation zones, an evaluation was performed to assess if the remedial alternatives presented in the Final OU-2B FS needed revision. This evaluation indicated that some remedial alternatives needed minor revisions. The revised remedial alternatives are presented in Section 3 of this appendix.
- The updated remedial action alternatives were evaluated based on the nine evaluation criteria identified in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (Title 40 Code of Federal Regulations [C.F.R.] Section [§] 300.430 [e][9][iii]). This detailed alternative evaluation is presented in Section 4 of this appendix.

2. Remedial Action Objectives

RAOs consist of medium-specific goals for protecting human-health and the environment. In accordance with the NCP, 40 C.F.R. § 300.430 (e)(2)(i), RAOs for OU-2B groundwater were established by specifying medium of concern (groundwater), potential exposure pathways, constituents of concern (COCs), and remediation goals.

2.1 **POTENTIAL EXPOSURE PATHWAYS**

Groundwater beneath Alameda Point (including OU-2B) is not currently used for drinking water, irrigation, or industrial supply. The FS analysis presented in this appendix is based on the assumption that OU-2B groundwater will not be used for drinking purposes and that the future use of OU-2B area will be restricted to commercial. Therefore, future receptors for OU-2B groundwater include commercial workers. The exposure of commercial workers to COCs in groundwater could occur via inhalation of COC vapors from groundwater that may migrate to indoor air.

In addition, continued migration of impacted groundwater and potential discharge into the Seaplane Lagoon at concentrations exceeding the values derived based on the applicable or relevant and appropriate requirements (ARARs) pertaining to surface water discharge will need to be addressed.

2.2 CONSTITUENTS OF CONCERN

All remedial actions at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites must be protective of human health and the environment, and comply with ARARs unless a waiver is justified. Therefore, the selection of COCs for OU-2B groundwater was based on human health risk considerations and the ARARs as summarized below.

The exposure of commercial workers to COCs in OU-2B groundwater could occur via inhalation of COC vapors from groundwater that may migrate to indoor air. Therefore, the constituent reported in OU-2B groundwater was selected as a COC if the following conditions were satisfied:

- 1. Constituent was considered a risk driver for commercial receptor via indoor air inhalation pathway (i.e. results in a cancer risk of greater than 10⁻⁶ or a noncancer hazard index (HI) of greater than 1).
- 2. Constituent was detected at relatively high frequency and its distribution indicates a release.

The following analytes satisfied the above criteria (see Appendix B of the Final OU-2B FS for cancer and non-cancer risks [using U.S. EPA toxicity factors] associated with potential vapor intrusion of chemicals of potential concern [COPCs] in groundwater) and were selected as COCs:

- 1. Trichloroethene (TCE)
- 2. Vinyl chloride (VC)

In addition to selection of COCs based on risk considerations, an evaluation was performed to determine whether any COCs need to be selected based on the potential chemical specific ARARs. The Federal Water Quality Criteria at 40 C.F.R. §§ 131.36 and 131.38 (referred to as the National Toxics Rule [NTR] and the California Toxics Rule [CTR]) constitute potential ARARs for discharge of OU-2B groundwater into the Seaplane Lagoon. Therefore, consistent with the ecological risk assessment documented in the Final OU-2B FS (OTIE 2011), this evaluation was based on the analytical results from groundwater monitoring wells, OU2B-MW01, OU2B-MW02, S21-TT-MW02A, S21-TT-MW03E, OU2B-MW04, S11-TT-MW04C, S11-TT-MW04D, S11-TT-MW04E, S11-TT-MW05C, S11-TT-MW05D, and S11-TT-MW05E, collected as part of investigations from

May 2006 and October 2008. These wells are referred to as Group 1 Wells in the Final OU-2B FS and are at locations immediately upgradient of the seawall and in closest proximity to receiving waters in the Seaplane lagoon. As such, analyte concentrations in samples from these wells are expected to be most representative of analyte concentrations in groundwater discharging into the lagoon.

2.2.1 Volatile Organic Compounds

EPCs for volatile organic compounds (VOCs) were calculated based on the upper confidence limits (UCLs) of the mean concentrations for all groundwater samples collected from the Group 1 wells between May 2006 and October 2008. These EPCs were compared to 10 times their respective NTR and CTR concentrations presented in Table 1. The dilution factor of 10 was applied to the most stringent of NTR and CTR values to account for dilution resulting from mixing with water in the Seaplane Lagoon. The dilution factor backup calculations are presented in Appendix H of the Final OU-2B FS document (OTIE 2011).

Based on this comparison, EPCs for all detected VOCs were less than 10 times their respective NTR and CTR concentrations (Table 1). In addition, the maximum detected concentrations of all detected VOCs in Group 1 wells were also less than 10 times their respective NTR and CTR concentrations, with the exception of TCE. Therefore, TCE was selected as a COC for discharge into the Seaplane Lagoon based on comparison with NTR and CTR concentrations.

2.2.2 Metals

Similar to VOCs, the calculated EPCs for metals in Group 1 wells were compared to 10 times their respective NTR and CTR concentrations presented in Table 2. The dilution factor of 10 was applied to the most stringent of NTR and CTR values to account for dilution resulting from mixing with water in the Seaplane Lagoon (see Final OU-2B FS Appendix H [OTIE 2011]).

Based on this comparison, with the exception of arsenic, the EPCs for all metals were less than 10 times their respective NTR and CTR concentrations. Arsenic exceeded 10 times its NTR and CTR concentrations; however, as shown on Table 2, its calculated EPC ($8.02 \ \mu g/L$) is lower than its background value ($20.7 \ \mu g/L$). In addition, the concentration of arsenic exceeded its background value in only one sample out of the total of 34 samples. Based on this, no metals warrant selection as COCs.

2.3 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

This section discusses the revisions to potential ARARs affecting the development of RAOs for groundwater remediation if groundwater beneath OU-2B is *not* considered a potential drinking water source.

If groundwater beneath OU-2B is *not* considered suitable for use as a potential drinking water source, the Federal or State drinking water maximum contaminant levels (MCLs) will *not* be potential ARARs for groundwater remedial action.

2.4 REMEDIAL ACTION OBJECTIVES

Consistent with the NCP (40 C.F.R. § 300.430 [e][2][i]), the following RAOs were developed for remediation of OU-2B groundwater:

- Minimize the potential for exposure of on-site receptors to COC vapors from groundwater at concentrations exceeding their respective remediation goals (RGs) for protection against indoor air risks.
- Minimize the potential for migration of impacted groundwater into Seaplane Lagoon at concentrations exceeding the values derived based on potential surface water discharge ARARs (Federal Water Quality Criteria at 40 C.F.R. § 131.36 and 131.38 [NTR and CTR]).

The above RAOs are consistent with the provisions of 40 C.F.R. § 300.430 (e)(2)(i), since they specify COCs (listed in Section 2.2), medium of concern (groundwater), potential exposure pathways (vapor inhalation and potential discharge into the Seaplane Lagoon) and RGs. The NCP further specifies that remediation goals shall establish acceptable exposure levels that are protective of human health and the environment and shall be developed by considering several factors including ARARs, cancer risk/non-cancer hazards, factors related to technical limitations such as detection/quantification limits, factors related to uncertainty, and other pertinent information (40 C.F.R. § 300.430 [e][2][i]). Based on this, the RGs for COCs in OU-2B groundwater were established at the levels that comply with potential chemical-specific ARARs, and are protective of human health and the environment as explained below.

2.4.1 Remediation Goals for OU-2B Groundwater

The groundwater RGs for OU-2B are the calculated RBCs for the COCs in groundwater assuming commercial use scenario (Table 3). The RBCs are the concentrations that are protective of human-health corresponding to a cancer risk of 10^{-6} or noncancer hazard quotient of 1. Attachment A of this appendix presents a summary of RBC calculation methodology corresponding to commercial use scenario.

2.4.2 Remediation Goals for Discharge into Seaplane Lagoon

The Federal Water Quality Criteria at 40 C.F.R. §§ 131.36 and 131.38 (NTR and CTR) are potentially relevant and appropriate federal requirements for discharge of OU-2B groundwater into the Seaplane Lagoon. As the groundwater discharges into the Seaplane Lagoon, some attenuation of COC concentrations will occur due to dilution resulting from mixing with water in the Seaplane Lagoon. A dilution factor of 10 was applied to the most stringent of NTR and CTR values to calculate RGs for discharge of groundwater into the Seaplane Lagoon (see Appendix H of the Final OU-2B FS for dilution factor calculations) (see Table 3).

2.5 TARGET REMEDIATION ZONE

A discussion of conceptual horizontal and vertical extents of target remediation zone is presented below. It should be noted that the horizontal and vertical extents of target remediation area will be finalized during the remedial design/remedial action phase. VOCs at the top of the water table are responsible for causing potential vapor intrusion problems rather than VOCs present at deeper intervals (DTSC 2011). Therefore, groundwater sampling during the remedial design/remedial action (RD/RA) phase at saturated-unsaturated interface (top of the water table) where partitioning from the groundwater to soil gas occurs (ITRC 2007, DTSC 2011, Tri-Service 2009) may be performed to establish the target remediation zones.

2.5.1 Vertical Extent

Groundwater modeling was conducted to evaluate the depth of cleanup below water table using active remediation technologies that will provide an appropriate buffer to minimize the potential for vapor intrusion risk. The details of this modeling are presented in Appendix F of the Final OU-2B FS. Based on this modeling, it was recommended that treatment of the hot-spots (greater than 10,000

micrograms per liter $[\mu g/L]$ of total VOCs) and impacted groundwater down to 30 feet below ground surface would provide an adequate buffer to minimize vapor intrusion risk. As discussed above, the final target remediation depth to address vapor intrusion risks from impacted groundwater will be finalized during the RD/RA phase.

2.5.2 Horizontal Extent

For cost estimating purposes, the horizontal extents of two representative COCs (TCE and VC) in shallow groundwater (approximately 30 feet below ground surface [bgs]) exceeding their respective *residential* RBCs for vapor intrusion pathway are presented on Figure 41 of the Final OU-2B FS. An examination of distribution and magnitude of TCE and VC concentrations shown on Figure 41 of the Final OU-2B FS indicates that there is no significant difference between the TCE and VC extents exceeding residential RBCs and the extents exceeding commercial RBCs for vapor intrusion pathway. As discussed above, the final target remediation area to address vapor intrusion risks from impacted groundwater will be finalized during the RD/RA phase.

3. Remedial Action Alternatives

The remedial action alternatives for OU-2B groundwater were developed by combining different technologies and process options corresponding to different GRAs developed in Section 5.2 of the Final OU-2B FS report. The target remediation zone identified in Section 2.5 of this appendix was also considered while developing the alternatives. This process ensured the development of a range of alternatives from those involving active restoration of the entire plume to those involving limited action but providing protection of human-health by minimizing the potential for unacceptable exposure:

- Alternative GM-1: No Action
- Alternative GM-2: In-Situ Thermal Treatment (ISTT) of Hot-Spots, Control/Treatment at the Seaplane Lagoon using Permeable Reactive Barrier (PRB), Monitored Natural Attenuation (MNA) and Institutional Controls (ICs)
- Alternative GM-3: Hot-Spots Treatment, Shallow Groundwater Treatment, Monitoring and ICs
 - Option GM-3a: ISTT of Hot-Spots and Shallow Groundwater Treatment using In-situ Chemical Oxidation (ISCO)
 - Option GM-3b: Hot-Spots and Shallow Groundwater Treatment using ISTT and In-Situ Bioremediation
- Alternative GM-4: Treatment of Entire Plume using Groundwater Recirculation, PRBs, and ICs

3.1 ALTERNATIVE GM-1: NO ACTION

Alternative GM-1 is the same as Alternative G-1 discussed in Section 5.5.1 of the Final OU-2B FS report.

3.2 ALTERNATIVE GM-2: ISTT OF HOT-SPOTS, CONTROL/TREATMENT AT THE SEAPLANE LAGOON USING PRB, MNA AND ICS

The individual components of Alternative GM-2 are summarized below.

3.2.1 ISTT of Source Areas/Hot-Spots

ISTT of source areas/hot-spots under Alternative GM-2 is the same as discussed for Alternative G-2 in Section 5.5.2.1 of the Final OU-2B FS.

3.2.2 Control/Treatment at the Seaplane Lagoon

Control/treatment at the Seaplane lagoon would be implemented as a contingency measure if groundwater monitoring results indicate that it is required to attain the RGs based on the groundwater discharge into Seaplane Lagoon. The control/treatment at the Seaplane Lagoon under Alternative GM-2 is the same as discussed for Alternative G-2 in Section 5.5.2.2 of the Final OU-2B FS.

3.2.3 MNA and ICs

MNA and ICs under Alternative GM-2 is the same as discussed for Alternative G-2 in Sections 5.5.2.3 and 5.5.2.4 of the Final OU-2B FS with the following exceptions:

• The overall scope of implementation of MNA and ICs under Alternative GM-2 would be less compared to Alternative G-2.

- MNA and ICs similar to Alternative G-2 would be implemented under Alternative GM-2 until concentrations of COCs decrease below their respective commercial RBCs in shallow groundwater.
- Following attainment of commercial RBCs, ICs would be continued to prevent residential use of area overlying OU-2B groundwater exceeding residential RBCs. In addition, groundwater monitoring would be required to assess if residential RBCs are attained in shallow groundwater and ICs can be terminated, and to assess the concentrations of COCs potentially discharged to the Seaplane Lagoon. ICs to prohibit residential use above the plume will be implemented as part of this remedial alternative until residential RBCs are attained.

Based on the groundwater modeling results presented in Appendix F of the Final OU-2B FS, for cost-estimation purposes, it is estimated that it would take 20 years (\pm 50 percent) to attain commercial RBCs and 25 years (\pm 50 percent) to attain residential RBCs after the implementation of ISTT at the hot-spots.

3.3 ALTERNATIVE GM-3: HOT-SPOTS TREATMENT, SHALLOW GROUNDWATER TREATMENT, MONITORING AND ICS

The individual components of Alternative GM-2 are summarized below.

3.3.1 Hot-Spots Treatment

Hot-spots treatment under Alternative GM-3 would be the same as discussed for Alternative G-3 in Section 5.5.3.1 of the Final OU-2B FS.

3.3.2 Shallow Groundwater Treatment

Shallow groundwater treatment under Alternative GM-3 would be the same as discussed for Alternative G-3 in Section 5.5.3.1 of the Final OU-2B FS with the exception that the scope of shallow groundwater treatment for Alternative GM-3 is less compared to Alternative G-3 since the commercial RBCs are higher than the residential RBCs.

The horizontal and vertical extents of target remediation area to address potential vapor intrusion risks will be finalized during the RD/RA phase. VOCs at the top of the water table are responsible for causing potential vapor intrusion problems rather than VOCs present at deeper intervals (DTSC 2011). Therefore, groundwater sampling during the RD/RA phase at saturated-unsaturated interface (top of the water table) where partitioning from the groundwater to soil gas occurs (ITRC 2007, DTSC 2011, Tri-Service 2009) may be performed to establish the target remediation zones.

3.3.3 ICs and Monitoring

The implementation of ICs under Alternative GM-3 would the same as discussed for Alternative G-3 in Section 5.5.3.3 of the Final OU-2B FS with the following exceptions:

- The overall scope of implementation of ICs under Alternative GM-3 would be less compared to Alternative G-3.
- ICs would be implemented under Alternative GM-3 until concentrations of COCs decrease below their respective commercial RBCs.
- Following attainment of commercial RBCs, ICs would be continued to prevent residential use of area overlying OU-2B groundwater exceeding residential RBCs.

• ICs to prohibit residential use above the plume will be implemented as part of this remedial alternative until residential RBCs are attained.

Alternative GM-3 would also include groundwater monitoring following active remediation to assess if residential RBCs are attained in shallow groundwater and ICs can be terminated, and to assess the concentrations of COCs potentially discharged to the Seaplane Lagoon.

For cost-estimation purposes, it is estimated that the time required to attain commercial RBCs in shallow groundwater (approximately 30 feet bgs) using Option GM-3a and Option GM-3b, would be 3 years, and 5 years, respectively. Based on the groundwater modeling results presented for Alternative G-3 on Figures 23 through 25 of Appendix F of the Final OU-2B FS, the plumes dissipated between the 10 year and 20 year timeframe for Layers 1 and 2 (top 30 feet of the aquifer), and therefore it is estimated that it would take 15 years (\pm 50 percent) to attain residential RBCs after the implementation of hot-spot and shallow groundwater treatment for both Option GM-3a and Option GM-3b.

3.4 ALTERNATIVE GM-4: TREATMENT OF ENTIRE PLUME USING GROUNDWATER RECIRCULATION, PRBS, AND ICS

Alternative GM-4 is the same as Alternative G-4 discussed in Section 5.5.4 of the Final OU-2B FS report with the following exceptions:

- The scope of implementation of groundwater recirculation, and PRBs would be less compared to Alternative G-4 since the remediation goals for Alternative GM-4 (vapor intrusion RBCs) are lower compared to remediation goals for Alternative G-4 (Federal/State MCLs).
- The overall scope of implementation of ICs under Alternative GM-4 would be less compared to Alternative G-4.
- ICs would be implemented under Alternative GM-4 until concentrations of COCs decrease below their respective commercial RBCs.
- Following attainment of commercial RBCs, ICs would be continued to prevent residential use of area overlying OU-2B groundwater exceeding residential RBCs.
- ICs to prohibit residential use above the plume will be implemented as part of this remedial alternative until residential RBCs are attained.

Alternative GM-4 would also include groundwater monitoring following active remediation to assess if residential RBCs are attained in shallow groundwater and ICs can be terminated, and to assess the concentrations of COCs potentially discharged to the Seaplane Lagoon.

Based on the groundwater modeling results presented in Appendix F of the Final OU-2B FS, for cost-estimation purposes, it is assumed that it would take 20 years (\pm 50 percent) to attain commercial RBCs and 25 years (\pm 50 percent) to attain residential RBCs across the estimated extent of OU-2B impacted groundwater.

4. Detailed Analysis of Alternatives

The NCP (40 C.F.R. § 300.430 [e][9][i] and [ii]) requires that a detailed analysis of remedial alternatives be conducted during the FS, based on the nine evaluation criteria identified in 40 C.F.R. § 300.430 (e)(9)(iii). The results of the detailed analysis provide the basis for identifying a preferred alternative and preparing the Proposed Plan.

Section 5.6.1 of the Final OU-2B FS provides a brief description of each of the nine evaluation criteria. Table 4 presents a summary of individual and comparative analysis of alternatives with respect to each evaluation criteria. The detailed analysis presented in Table 4 is not significantly different from the analysis presented in the Final OU-2B FS (OTIE 2011). The overall ratings of the updated remedial alternatives are similar to those for the original remedial alternatives presented in the Final OU-2B FS. The revised cost estimates for remedial alternatives are listed in Table 4 and discussed in Section 6.

5. Applicable or Relevant and Appropriate Requirements

The Federal and State requirements determined to be potential location- and action-specific ARARs for Alternatives G-2, G-3a, G-3b, and G-4 (presented in the main text and Appendix A of the Final OU-2B FS) constitute potential Federal and State location-specific ARARs for Alternatives GM-2, GM-3a, GM-3b, and GM-4 (presented in this appendix) with the following exceptions.

The following requirements will not be potential ARARs for Alternatives GM-2, GM-3a, GM-3b, and GM-4:

- Federal MCLs and maximum contaminant level goals (MCLGs) (40 C.F.R. §§ 141.61[a] and [c], and 141.50)
- State MCLs (California Code of Regulations [Cal. Code Regs.] title [tit.] 22, § 64444)

6. Cost Estimates

Cost estimates for Alternatives GM-2, GM-3a, GM-3b, and GM-4 were developed using existing cost estimates for Alternatives G-2, G-3a, G-3b, and G-4 documented in Appendix C of the Final OU-2B FS. The assumptions and methodology for cost estimates are summarized in Table 5. The estimated present-worth costs for Alternatives GM-2, GM-3a, GM-3b, and GM-4 are presented in Table 6.

7. References

- Department of Toxic Substances Control (DTSC). 2011. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance). October.
- OTIE. 2011. Final Feasibility Study Report for Operable Unit (OU) 2B Installation Restoration Sites 3, 4, 11, and 21, Alameda Point. Alameda, California. December.
- The Interstate Technology & Regulatory Council (ITRC). 2007. Technical and Regulatory Guidance, Vapor Intrusion Pathway: A Practical Guideline. January.
- The Tri-Service Environmental Risk Assessment Workgroup (Tri-Service). 2009. DoD Vapor Intrusion Handbook. January.

Tables

Table 1: Comparison of VOC Concentrations (Group 1 Wells)^a with Concentrations Based on National Toxics Rule and California Toxics Rule

								on Based on	Concentrati					
								'R ^b		rR ^b			Does the	Does the
							40 C.F.R Potential	§ 131.36 Potential	Potential	§ 131.38 Potential			Maximum	Maximum
Analyte	Number of Samples	Number of Detects	Number of Non-Detects	Frequency of Detection	Maximum Detected Concentration (µg/L)	Calculated EPC Value (µg/L)	Aquatic Receptor ^c (μg/L)	Human Receptor ^d (µg/L)	Aquatic Receptor ^c (μg/L)	Human Receptor ^d (µg/L)	Does the EPC Exceed the Lowest Concentration Based on NTR?	Concentration Based on CTR?	Detected Concentration Exceed the Lowest Concentration Based on NTR?	Detected Concentration Exceed the Lowest Concentration Based on CTR?
Acetone	29	4	25	13.8%	7.7	4.202	^e	^e	^e	^e	^e	^e	^e	^e
Tert-Butyl Alcohol	21	11	10	52.4%	160	39.55	^e	^e	^e	^e	^e	^e	^e	^e
N-Butylbenzene	21	2	19	9.5%	0.5	0.345	^e	^e	^e	^e	^e	^e	_e 	e
Sec-Butylbenzene	21	11	10	52.4%	1.4	0.422	^e	^e	^e	^e	^e	^e	^e	^e
T-Butylbenzene	21	11	10	52.4%	0.3	0.252	^e	^e	^e	^e	^e	^e	^e	^e
T-Butylbenzene	21	11	10	52.4%	0.3	0.252	^e	^e	^e	^e	^e	^e	^e	^e
T-Butylbenzene	21	11	10	52.4%	0.3	0.252	^e	^e	^e	^e	^e	^e	^e	^e
Benzene	29	4	25	13.8%	5.6	0.926	^e	710	^e	710	No	No	No	No
Toluene	29	4	25	13.8%	0.42	0.335	^e	2,000,000	^e	2,000,000	No	No	No	No
Carbon disulfide	21	3	18	14.3%	2.7	0.547	^e	^e	^e	^e	^e	^e	^e	^e
2-Chlorotoluene	21	1	20	4.8%	4.9	4.9	^e	^e	^e	^e	^e	^e	^e	^e
Chloroethane	29	1	28	3.4%	0.31	0.31	^e	^e	^e	^e	^e	^e	^e	^e
p-Isopropyltoluene	21	2	19	9.5%	0.09	0.101	^e	^e	^e	^e	^e	^e	^e	^e
1,2-Dichlorobenzene	21	2	19	9.5%	0.1	0.107	^e	170,000	^e	170,000	No	No	No	No
1,1-Dichloroethene	29	3	26	10.3%	1.9	0.558	^e	32	^e	32	No	No	No	No
cis-1,2-Dichloroethene	29	3	26	10.3%	320	102.6	^e	^e	^e	^e	^e	^e	^e	^e
trans-1,2-Dichloroethene	29	3	26	10.3%	11	3.139	^e	^e	e	1,400,000	^e	No	^e	No
Ethylbenzene	29	6	23	20.7%	3	0.592	^e	290,000	^e	290,000	No	No	No	No
Isopropylbenzene	21	13	8	61.9%	10	3.111	^e	^e	^e	^e	^e	^e	^e	^e
4-Methyl-2-pentanone	29	4	25	13.8%	1.6	0.994	^e	^e	-e 	^e	^e	^e	-e 	e
Methylene chloride	29	1	28	3.4%	0.4	0.4	^e	16,000	^e	16,000	No	No	No	No
N-Propylbenzene	21	6	15	28.6%	0.9	0.296	^e	^e	^e	^e	^e	^e	^e	^e
1,1,2,2-Tetrachloroethane	29	1	28	3.4%	0.5	0.5	^e	110	^e	110	No	No	No	No
Tetrachloroethene	29	2	27	6.9%	1	1	^e	88.5	^e	88.5	No	No	No	No
1,1,2-Trichloroethane	29	1	28	3.4%	1.9	1.9	^e	420	^e	420	No	No	No	No
1,2,4-Trichlorobenzene	29	1	28	3.4%	0.52	0.52	^e	^e	^e	^e	^e	^e	^e	^e
Trichloroethene	29	12	17	41.4%	1800	754.2	^e	810	^e	810	No	No	Yes	Yes
Chloroform	29	1	28	3.4%	1.8	1.8	^e	4,700	^e	4,700	No	No	No	No
1,2,4-Trimethylbenzene	21	3	18	14.3%	0.2	0.227	^e	^e	^e	^e	^e	^e	e	^e
1,2,4-Trimethylbenzene	21	3	18	14.3%	0.2	0.227	^e	^e	^e	^e	^e	^e	^e	^e
1,3,5-Trimethylbenzene	21	3	18	14.3%	0.2	0.191	^e	^e	^e	^e	^e	^e	e	^e
Vinyl chloride	29	3	26	10.3%	53	11.32	e	5,250	e	5,250	No	No	No	No
Xylenes, m & p	20	3	17	15.0%	0.2	0.191	^e	^e	^e	^e	^e	^e	^e	e

Notes:

^a Group 1 wells include, OU2B-MW01, OU2B-MW02, S21-TT-MW02A, S21-TT-MW03E, OU2B-MW04, S11-TT-MW04C, S11-TT-MW04D, S11-TT-MW04E, S11-TT-MW05C, S11-TT-MW05D, and S11-TT-MW05E, consistent with ecological risk assessment conducted in the Final OU-2B FS. These wells are located immediately upgradient of the seawall and in closest proximity to receiving waters in the Seaplane lagoon. As such, analyte concentrations in samples from these wells are expected to be most representative of analyte concentrations in groundwater discharging into the lagoon.

^b Assuming chemical is attenuated/diluted 10 times as it discharges into the lagoon (see Appendix H of the Final OU-2B FS for dilution factor backup).

^c Lesser of criteria maximum concentration and criteria continuous concentration (40 C.F.R §§ 131.36 and 131.38).

^d For consumption of organisms only.

^e Numerical criterion does not exist / Not applicable

Table 2: Comparison of Metal Concentrations (Group 1 Wells)^a with Concentrations Based on National Toxics Rule and California Toxics Rule

				Frequency of s Detection								N 40 C.F.	tion Based on ITR ^a R § 131.36	0 40 C.F.	tion Based on CTR ^a R § 131.38				Does the	Does the
	Number of Samples	Number of Detects			Maximum Detected of Concentration (μg/L)	Background Value (μg/L)	Number of Detections Exceeding Background	Calculated EPC Value (μg/L)	Potential Aquatic Receptor ^ь (μg/L)	Potential Human Receptor ^c (µg/L)	Potential Aquatic Receptor ^b (µg/L)	Potential Human Receptor ^c (μg/L)	Does the EPC Exceed the Lowest Concentration Based on NTR?	Does the EPC Exceed the Lowest Concentration Based on CTR?	Does the EPC Exceed the Background Value?	Maximum Concentration	Maximum Concentration			
Aluminum, dissolved	28	8	20	28.6%	69	1070	0	35.4	^e	^e	^e	^e	^e	^e	No	^e	^e			
Antimony, dissolved	33	12	21	36.4%	1.5	37.5	0	0.42	^e	43000	^e	43000	No	No	No	No	No			
Arsenic, dissolved	34	31	3	91.2%	26	20.7	1	8.024	360	1.4	360	1.4	Yes	Yes	No	Yes	Yes			
Barium, dissolved	34	34	0	100.0%	400	569.5	0	175	^e	e	^e	e	^e	^e	No	^e	^e			
Beryllium, dissolved	29	13	16	44.8%	1.5	2.5	0	0.516	^e	^e	^e	e	^e	^e	No	^e	^e			
Cadmium, dissolved	32	6	26	18.8%	1.3	3.9	0	0.582	93	^e	93	^e	No	No	No	No	No			
Chromium, dissolved	33	11	22	33.3%	3.5	12.5	0	1.548	500	^e	500	e	No	No	No	No	No			
Cobalt, dissolved	33	19	14	57.6%	1.5	17.2	0	0.346	^e	e	^e	e	^e	^e	No	^e	^e			
Copper, dissolved	26	10	16	38.5%	2	24.2	0	1.079	24	^e	31	^e	No	No	No	No	No			
Lead, dissolved	33	32	1	97.0%	57	6.7	22	27.84	81	e	81	e	No	No	Yes	No	No			
Manganese, dissolved	35	35	0	100.0%	7100	1741	11	2886	^e	e	^e	^e	^e	^e	Yes	^e	^e			
Mercury, dissolved	34	3	31	8.8%	0.12	0.2	0	0.117	0.25	1.5	^e	0.51	No	No	No	No	No			
Molybdenum, dissolved	33	5	28	15.2%	3.1	12.7	0	1.514	^e	e	^e	^e	^e	^e	No	^e	^e			
Nickel, dissolved	32	17	15	53.1%	2.4	21	0	0.837	82	46,000	82	46,000	No	No	No	No	No			
Selenium, dissolved	33	17	16	51.5%	11	8.4	2	4.49	710	e	710	e	No	No	No	No	No			
Silver, dissolved	31	9	22	29.0%	4.3	4.9	0	2.164	19	e	19	e	No	No	No	No	No			
Thallium, dissolved	30	5	25	16.7%	3	13.8	0	1.681	^e	63	e	63	No	No	No	No	No			
Vanadium, dissolved	32	20	12	62.5%	2.8	26.3	0	1.585	^e	e	^e	e	e	^e	No	^e	^e			
Zinc, dissolved	34	14	20	41.2%	25	36.4	0	9.648	810	e	810	e	No	No	No	No	No			

Notes:

^a Group 1 wells include, OU2B-MW01, OU2B-MW02, S21-TT-MW02A, S21-TT-MW03E, OU2B-MW04, S11-TT-MW04C, S11-TT-MW04D, S11-TT-MW04E, S11-TT-MW05C, S11-TT-MW05D, and S11-TT-MW05E, consistent with ecological risk assessment conducted in the Final OU-2B FS. These wells are located immediately upgradient of the seawall and in closest proximity to receiving waters in the Seaplane lagoon. As such, analyte concentrations in samples from these wells are expected to be most representative of analyte concentrations in groundwater discharging into the lagoon.

^b Assuming chemical is attenuated/diluted 10 times as it discharges into the lagoon (see Appendix H of the Final OU-2B FS for dilution factor calculations).

^cLesser of criteria maximum concentration and criteria continuous concentration (40 C.F.R §§ 131.36 and 131.38).

^d For consumption of organisms only.

^e Numerical criterion does not exist / Not applicable.

^f The listed concentrations based on NTR and CTR values are for hexavalent chromium.

"--" = Not applicable

Table 3: Remediation Goals - OU-2B Groundwater

Analyte	RBCs – Commercial Use	Pot	ential Chemical	Selected Remediation Goal for OU-28	Selected Remediation Goal for Groundwater Discharge into			
Inhalation - Indoor Air		Based on N 40 C.F.R § 1		Based o 40 C.F.R.		Groundwater ^e (μg/L)	Seaplane Lagoon (μg/L)	
	(µg/L)	Potential Aquatic Receptor ^b (μg/L)	Potential Human Receptor ^c (μg/L)	Potential Aquatic Receptor ^b (μg/L)	Potential Human Receptor ^c (μg/L)			
TCE	<mark>116</mark> (91.2)	^d	810	^d	810	<mark>116</mark> (91.2)	810	
VC	<mark>31.4</mark> (10.7)	d	5,250	^d	5,250	<mark>31.4</mark> (10.7)		

Notes:

The RBCs for TCE and VC highlighted in yellow were revised based on the new November 2011 RSLs and the 2011 EPA Exposure Factors Handbook. The value in parenthesis is the previously estimated RBC presented in the Final OU-2B FS (OTIE 2011).

-- Not applicable ^aAssuming chemical is attenuated/diluted 10 times as it discharges into the lagoon (see Appendix H of the Final OU-2B FS for dilution factor calculations). ^bLesser of criteria maximum concentration and criteria continuous concentration (40 C.F.R §§ 131.36 and 131.38).

^c For consumption of organisms only.

^d Numerical criterion does not exist.

^e Based on the RBC for commercial use (see Attachment A for RBC calculation methodology).

Table 4: Individual and Comparative Analysis of Groundwater Remedial Alternatives

Criterion	Alternative GM-1 – No Action	Alternative GM-2 – ISTT of Hot Spots, Control/Treatment at the Seaplane Lagoon Using PRB, MNA, and ICs	Alternative GM-3a – ISTT of Hot Spots, Shallow Groundwater Treatment using ISCO, Monitoring, and ICs	Alternative GM-3b – Hot Spots and Shallow Groundwater Treatment using ISTT and In-situ Bioremediation, Monitoring, and ICs	Alternative GM-4: Treatment of the Entire Plume using Groundwater Recirculation and PRBs Plus ICs	
Overall Protection of	Not Satisfied	Satisfied	Satisfied	Satisfied	Satisfied	
No remedial activities would be performed to contain, treat, or reduce exposure to COCs ir groundwater. In addition, there would be no way to assess fate of COCs in groundwater. This alternative does not reduce risks to potential receptors due to exposure to impacted groundwater since no restrictions are imposed on the area overlying OU-2B impacted groundwater.		Treatment of the hot-spots/source areas using ISTT would reduce and minimize further migration of high concentrations of COCs downgradient. PRB upgradient of the Seaplane lagoon would control discharge of COCs into the Seaplane lagoon. Natural attenuation mechanisms would reduce concentrations of COCs in groundwater downgradient of source areas over time to concentrations less than the calculated RBCs protective of potential commercial receptors. In addition, ICs including land and groundwater use restrictions (e.g. requirement to install and operate an engineered vapor intrusion mitigation technology/system for buildings) would minimize the potential for exposure to COCs above their respective RGs.	Treatment of the hot-spots/source areas using ISTT would reduce and minimize further migration of high concentrations of COCs downgradient. In addition, the treatment of shallow groundwater using ISCO would reduce concentrations of COCs to levels less than their respective RGs (commercial RBCs for vapor intrusion) and control their discharge into the Seaplane lagoon. ICs including land and groundwater use restrictions would minimize the potential for exposure to COCs above their respective RGs.	Treatment of the hot-spots/source areas using ISTT would reduce and minimize further migration of high concentrations of COCs downgradient. In addition, the treatment of shallow groundwater using in-situ bioremediation would reduce concentrations of COCs to levels less than their respective RGs (commercial RBCs for vapor intrusion) and control their discharge into the Seaplane lagoon. ICs including land and groundwater use restrictions would minimize the potential for exposure to COCs above their respective RGs.	Extraction of impacted groundwater and its treatment above-ground along with installation of PRBs would reduce COC concentrations in groundwater and reduce further discharge of COCs into Seaplane Lagoon. Alternative G-4 would include implementation of ICs until the concentrations of COCs in OU-2B groundwater are reduced to less than or equal to RGs. These ICs would minimize the potential for exposure of on-site receptors to COCs that could pose unacceptable risk.	
Compliance with ARARs	The No Action Alternative does not trigger ARARs. Therefore, this criterion is not applicable.	Satisfied Complies with all identified ARARs.	Satisfied Complies with all identified ARARs.	Satisfied Complies with all identified ARARs.	Satisfied Complies with all identified ARARs.	
Long-Term	Not Applicable	Fair	Good	Good	Good	
Effectiveness	This criterion is not applicable since the threshold criteria (Overall Protection of Human-Health and the Environment, and Compliance with ARARs) are not met.	ISTT at the source areas would provide long-term effectiveness in reducing relatively high concentrations of COCs. In addition, a PRB upgradient of the Seaplane lagoon would provide long-term effectiveness in controlling the discharge of COCs into the lagoon. This alternative is considered more effective and reliable for treatment of impacted groundwater compared to Alternative G-1 because of the active remediation at the source areas and upgradient of the Seaplane lagoon.	ISTT at the source areas would provide long-term effectiveness in reducing relatively high concentrations of COCs. In addition, shallow groundwater treatment using ISCO would provide reasonable buffer against unacceptable vapor intrusion risk, and would lead to control of the discharge of COCs into the Seaplane lagoon. This alternative is considered more effective and reliable for treatment of impacted groundwater compared to Alternatives G-1 and G-2 because of the larger scale of proposed active remediation.	ISTT and in-situ bioremediation at the source areas would provide long-term effectiveness in reducing relatively high concentrations of COCs. In addition, shallow groundwater treatment using in-situ bioremediation would provide reasonable buffer against unacceptable vapor intrusion risk, and would lead to control of the discharge of COCs into the Seaplane lagoon. This alternative is considered more effective and reliable for treatment of impacted groundwater compared to Alternatives G-1 and G-2 because of the larger scale of proposed active remediation.	The implementation of multiple groundwater recirculation loops and PRBs would be effective to reduce COC concentrations in groundwater and prevent further uncontrolled discharge of COCs into Seaplane Lagoon. This alternative is considered more effective and reliable for treatment of impacted groundwater compared to Alternatives G-1 and G-2 because of the larger scale of proposed active remediation.	
Reduction in Toxicity,	Not Applicable	Fair to Good	Fair	Fair	Good	
Reduction in Toxicity, Mobility, and Volume through Treatment This criterion is not applicable since the threshold criteria (Overall Protection of Human-Health and the Environment, and Compliance with ARARs) are not met.		Approximately 60 percent of the total VOC mass present in hot-spots would be treated using ISTT. The toxicity, mobility, and volume of the remaining VOCs would be reduced by PRB at the Seaplane Lagoon and natural attenuation mechanisms such as dilution dispersion, and biodegradation. The PRB at the Seaplane Lagoon under Alternative G-2a would be designed to treat the entire estimated vertical extent of COCs (downgradient of the hot-spots) passing through it as compared to just shallow groundwater treatment for Alternatives G-3a through G-3d. The treatment media for PRB would include ZVI which would lead to complete destruction of COCs into potentially non-toxic products such as ethene, ethane, and chloride.	ISTT would remove relatively high concentrations of COCs at the source areas and transfer majority of the COCs to activated carbon. ISCO would completely destroy COCs to potentially non-toxic products such as carbon dioxide and water, thereby reducing toxicity, mobility, and volume of VOCs in shallow groundwater. Approximately 90 percent of the total VOC mass present in OU-2B groundwater is estimated to be treated by ISTT and ISCO.	ISTT would remove relatively high concentrations of COCs at the source areas and transfer majority of the COCs to activated carbon. In-situ bioremediation would completely destroy COCs to potentially non-toxic products such as ethane, ethane, carbon dioxide and water, thereby reducing toxicity, mobility, and volume of VOCs in shallow groundwater. Approximately 90 percent of total VOC mass present in OU-2B groundwater is expected to be treated by ISTT and in- situ bioremediation.	Treatment of extracted groundwater above-ground and in-situ treatment using PRBs would reduce toxicity, mobility, and volume of COCs in groundwater. If ex-situ treatment is conducted using technologies such as advanced oxidation, COCs would be completely destroyed to potentially non-toxic products such as carbon dioxide and water. The PRB containing ZVI and/or organic medium would completely destroy COCs into innocuous products such as ethene, ethane, and chloride, resulting in reduction of toxicity, mobility, and volume of COCs in groundwater.	

Table 4: Individual and Comparative Analysis of Groundwater Remedial Alternatives (continued)

Criterion	Alternative GM-1 – No Action	Alternative GM-2 – ISTT of Hot Spots, Control/Treatment at the Seaplane Lagoon Using PRB, MNA, and ICs	Alternative GM-3a – ISTT of Hot Spots, Shallow Groundwater Treatment using ISCO, Monitoring, and ICs	Alternative GM-3b – Hot Spots and Shallow Groundwater Treatment using ISTT and In-situ Bioremediation, Monitoring, and ICs	Alternative GM-4: Treatment of the Entire Plume using Groundwater Recirculation and PRBs Plus ICs
Short-Term	Not Applicable	Poor	Poor to Fair	Poor to Fair	Fair
Effectiveness	This criterion is not applicable since the threshold criteria (Overall Protection of Human-Health and the Environment, and Compliance with ARARs) are not met.	Drilling and trenching activities would present short- term risks of exposure of work crews to COC- impacted groundwater and the inherent physical risk of using mechanized well drilling/trenching equipment. Above-ground treatment of contaminated vapors extracted from the subsurface as part of ISTT would present short-term risk of exposure of work crews to COCs during the O&M phase. ISTT also presents short-term risk of exposure of work crews to hot surfaces or to energized electrical sources. The risks to on-site workers during the O&M phase of PRB are expected to be minimal since treatment of COCs would occur in-situ. This alternative would have a high degree of environmental impact as evaluated through the sustainable environmental remediation (SER) analysis (see Appendix D of the Final OU-2B FS ^a). The pollutant and GHG emissions, and energy use are estimated to be the highest for operation of ISTT system when compared to other activities. The injury and fatality risks are estimated to be the highest for transportation of field personnel during construction and O&M phases.	Drilling and well/electrode installation activities would present short-term risks of exposure of work crews to COC-impacted groundwater and the inherent physical risk of using mechanized equipment. ISTT would require above-ground treatment of contaminated vapors extracted from the subsurface, which would present short-term risk of exposure of work crews to COCs during the O&M phase. ISTT also presents short-term risk of exposure of work crews to hot surfaces or to energized electrical sources. The risks to on-site workers during the O&M phase of ISCO are expected to be minimal since treatment of COCs would occur in-situ. This alternative would have a high degree of environmental impact as evaluated through the SER analysis (see Appendix D of the Final OU-2B FS ^a). The pollutant and GHG emissions, and energy use are estimated to be the highest for operation of ISTT system when compared to other activities. The injury and fatality risks are estimated to be the highest for transportation of field personnel during construction and O&M phases.	Drilling and well/electrode installation activities would present short-term risks of exposure of work crews to COC-impacted groundwater and the inherent physical risk of using mechanized equipment. ISTT would require above-ground treatment of contaminated vapors extracted from the subsurface, which would present short-term risk of exposure of work crews to COCs during the O&M phase. ISTT also presents short-term risk of exposure of work crews to hot surfaces or to energized electrical sources. The risks to on-site workers during the O&M phase of in-situ bioremediation are expected to be minimal since treatment of COCs would occur in-situ. This alternative would have a high degree of environmental impact as evaluated through the SER analysis (see Appendix D of the Final OU-2B FS ^a). The pollutant and GHG emissions, and energy use are estimated to be the highest for operation of ISTT system when compared to other activities. The injury and fatality risks are estimated to be the highest for transportation of field personnel during construction and O&M phases.	Installation of PRB, groundwater treatment system and extraction/injection wells would likely pose increased risks to site workers due to exposure of work crews to COCs-impacted groundwater and the inherent physical risk of using drilling and construction equipment. There is a risk for exposure of site workers to impacted groundwater when it is extracted and treated aboveground. Alternative G-4 would have a high degree of environmental impact as evaluated through the SER analysis (see Appendix D of the Final OU-2B FS ^a). The pollutant and GHG emissions, and energy use are estimated to be the highest for operation of ex-situ treatment system (assumed to advanced oxidation process using hydrogen peroxide and ozone) when compared to other activities. The injury and fatality risks are estimated to be the highest for transportation of field personnel during construction and O&M phases.
Implementability	Not Applicable	Fair	Fair to Good	Fair	Poor
	This criterion is not applicable since the threshold criteria (Overall Protection of Human-Health and the Environment, and Compliance with ARARs) are not met.	Both ISTT and PRB are well-developed technologies with equipment and vendors readily available. ISTT has been successfully implemented at OU-2B in the past. The design, construction, and operation of a PRB will require pilot studies and experienced personnel.	Both ISTT and ISCO are well-developed technologies with equipment and vendors readily available. ISCO and ISTT pilot studies have been conducted at OU-2B and would provide valuable data to optimize the design of the full-scale remediation.	Both ISTT and ISB are well-developed technologies with equipment and vendors readily available. ISTT has been successfully implemented at OU-2B in the past. However, pilot tests and experienced personnel will be required for full-scale design and implementation of bioremediation.	Full-scale implementation of groundwater recirculation will require pilot testing and detailed groundwater modeling. The design, construction, and operation of PRB would also require pilot studies and experienced personnel.
State Acceptance	The State has not commented on this alterative.	The State has not commented on this alterative.	State review of this alternative is pending.	The State has not commented on this alterative.	The State has not commented on this alterative.
Community Acceptance	Community acceptance of this alternative will be assessed following the public review process.	Community acceptance of this alternative will be assessed following the public review process.	Community acceptance of this alternative will be assessed following the public review process.	Community acceptance of this alternative will be assessed following the public review process.	Community acceptance of this alternative will be assessed following the public review process.
Cost ^b	No Costs	Fair	Fair	Good	Poor
		\$14,419,000 ^c	\$14,786,000 ^d	\$12,421,000 ^e	\$16,752,000 ^f

Notes: ^a SER analysis was performed for Alternatives G-2, G-3a, G-3b, and G-4 and is documented in Appendix D of the Final OU-2B FS. Because of the use of the same remediation technologies, the environmental footprints of Alternatives GM-2, GM-3a, GM-3b, and GM-4 will be proportional to Alternatives G-2, G-3a, G-3b, and G-4, respectively.

^b Alternative that costs the least was rated as good. ^c The present worth analysis was performed assuming construction and O&M period of 27 years and a discount rate of 2.7 percent.

^d The present worth analysis was performed assuming construction and O&M period of 27 years and a discount rate of 2.7 percent. ^e The present worth analysis was performed assuming construction and O&M period of 18 years and a discount rate of 2.7 percent. ^e The present worth analysis was performed assuming construction and O&M period of 20 years and a discount rate of 2.7 percent. ^f The present worth analysis was performed assuming construction and O&M period of 20 years and a discount rate of 2.7 percent.

ARARs = applicable or relevant and appropriate requirements ZVI =zero valent iron

COC = Contaminants of Concern

= Institutional Controls ICs

ISCO = In Situ Chemical Oxidation

= monitored natural attenuation MNA

O&M = operation and maintenance

PRB = permeable reactive barrier

SER = sustainable environmental remediation

TCE = trichloroethene

VC = vinyl chloride

Remedial Alternatives	Summary of Assumptions
Alternative GM-2 Hot-Spots Treatment using ISTT, Control/Treatment at the Seaplane Lagoon	 Present-Worth costs were developed using the estimated costs for Alternative G-2 presented in Appendix C of the Final OU-2B FS.
using PRB, MNA and ICs	• The following Alternative G-2 costs were left unchanged:
	 Remedial design costs
	 Capital costs for implementation of ISTT, PRB, MNA and ICs
	 O&M costs for ISTT
	• The remaining O&M and periodic costs were parametrically estimated based on the differences in estimated O&M durations of Alternatives G-2 and GM-2 per the formula ^a presented in the notes below.
Alternative GM-3a	Present-Worth costs were developed using the
Hot-Spots Treatment using ISTT and Shallow Groundwater Treatment using ISCO, MNA,	estimated costs for Alternative G-3a presented in Appendix C of the Final OU-2B FS.
and ICs	 The following Alternative G-3a costs were left unchanged:
	 Remedial design costs
	 Capital costs for implementation of ISTT, MNA and ICs
	 O&M costs for ISTT
	 Capital costs for ISCO were revised to include costs for two injection events. The O&M costs for ISCO were revised to include costs for two years of monitoring.
	 The remaining O&M and periodic costs were parametrically estimated based on the differences in O&M durations of Alternatives G-3a and GM-3a per the formula^a presented in the notes below.
Alternative GM-3b Hot-Spots and Shallow Groundwater Treatment using ISTT and In-Situ	 Present-Worth costs were developed using the estimated costs for Alternative G-3b presented in Appendix C of the Final OU-2B FS.
Bioremediation, MNA, and ICs	 The following Alternative G-3b costs were left unchanged:
	 Remedial design costs
	 Capital costs for implementation of ISTT, in-situ bioremediation, MNA and ICs
	 O&M costs for ISTT
	 The O&M costs for in-situ bioremediation were revised for include costs for four years of monitoring.
	 The remaining O&M and periodic costs were parametrically estimated based on the differences in O&M durations of Alternatives G-3b and GM-3b per the formula^a presented in the notes below.

Table 5: Summary of Assumptions for Cost Estimates (continued)

Remedial Alternatives	Summary of Assumptions
<i>Alternative GM-4</i> Treatment of Entire Plume using Groundwater Recirculation, PRBs, and ICs	 Present-Worth costs were developed using the estimated costs for Alternative G-4 presented in Appendix C of the Final OU-2B FS.
	 The following Alternative G-4 costs were left unchanged: Remedial design costs Capital costs for implementation of groundwater extraction and treatment, groundwater monitoring, PRBs, and ICs
	 The remaining O&M and periodic costs were parametrically estimated based on the differences in O&M durations of Alternatives G-4 and GM-4 per the formula^a presented in the notes below.

^a Formula used for parametric estimation of costs:

 $\frac{\text{Total } O \& M \text{ and Periodic Costs for Alternative } G - X}{\text{Estimated } O \& M \text{ Duration of Alternative } G - X} \times \text{Estimated } O \& M \text{ Duration of Alternative } GM - X$

Table 6: Summary of Present-Worth Costs

Remedial Alternatives	Remedial Construction and O&M Duration (years) ^a	Period of Analysis (years) ^f	Present-Worth (\$) ^g
Impacted Groundwater			
Alternative GM-2 Hot-Spots Treatment using ISTT, Control/Treatment at the Seaplane Lagoon using PRB, MNA and ICs	27 ^b	30	\$14,419,000
<i>Alternative GM-3a</i> Hot-Spots Treatment using ISTT and Shallow Groundwater Treatment using ISC), MNA, and ICs	18 [°]	22	\$14,786,000
<i>Alternative GM-3b</i> Hot-Spots and Shallow Groundwater Treatment using ISTT and In-Situ Bioremediation, MNA, and ICs	20 ^d	23	\$12,421,000
<i>Alternative GM-4</i> Treatment of Entire Plume using Groundwater Recirculation, PRBs, and ICs	26 ^e	29	\$16,752,000

Notes:

^a Based on the assumed duration of remediation using active remediation technologies, and the assumed durations presented in

Section 3 of Appendix A. ^b Based on the assumed construction duration of 1 year, 1 year of active hot-spot remediation, and 25 years of implementation of ICs/MNA/groundwater monitoring.

^c Based on the assumed construction/implementation duration of 3 years for ISTT/ISCO, and 15 years of implementation of

ICs/groundwater monitoring. ^d Based on the assumed construction duration/implementation duration of 5 years for ISTT/In-Situ Bioremediation, and 15 years of implementation of ICs/groundwater monitoring.

^e Based on the assumed construction duration of 1 year for groundwater recirculation and 25 years of implementation of the remedy.

Assuming it takes 3 years for planning and design (from base year 2010 up to 2013).

⁹The costs are rounded off to nearest thousands.

Attachment A Methodology for Calculation of Risk-Based Groundwater Concentrations – Commercial Use

1. INTRODUCTION

This appendix presents a brief methodology for calculation of risk-based concentrations (RBCs) for vapor intrusion pathway for potential commercial receptors for the groundwater constituents of concern (COCs) selected in Appendix A. The RBCs are the concentrations that are protective of human health or correspond to a cancer risk of 10^{-6} or noncancer hazard quotient of 1.

1.1 RBCs – INDOOR AIR INHALATION

Per Section 2.2 of Appendix A, RBCs based on vapor intrusion pathway were calculated for the following COCs:

- trichloroethene (TCE)
- vinyl chloride (VC)

The following sections present a brief summary of the methodology and parameters used to calculate RBCs for COCs in groundwater that are protective of potential indoor air exposure.

1.1.1 Overall Methodology

Consistent with the United States Environmental Protection Agency (U.S. EPA) guidance (U.S. EPA 2004), the Johnson and Ettinger (J&E) Model was used to estimate RBCs for VOCs in groundwater that are protective of potential commercial receptors at OU-2B. The toxicity values for the COCs used in the J&E Model were consistent with toxicity values used by the U.S. EPA Region 9 in development of November 2011 Regional Screening Levels (RSLs) (U.S. EPA 2011a).

1.1.2 Model Parameters

A summary of site-specific parameters used in the J&E Model along with the basis for each is presented in Table 1. Because of the close proximity of OU-2A and OU-2B and the anticipated similarity of conditions, a single-set of input parameters (primarily based on that data collected at OU-2B) was developed for use at OU-2A and OU-2B for calculation of vapor intrusion RBCs.

Table 1: Summary of J&E Vapor Intrusion Model Input Parameters

Parameter ^a	Input Value - Commercial	Basis
		Soil Parameters
Average soil/groundwater temperature (degrees C)	18.5	Based on the data collected at OU-2B during Data Gap Investigation conducted in 2008 (Tetra Tech 2008).
Depth below grade to bottom of enclosed space floor (cm)	15	Default value for slab-on-grade construction presented in the User's Guide for Subsurface Vapor Intrusion into Buildings (U.S. EPA 2004).
Depth below grade to water table (cm and feet)	182.88 cm (6 feet)	Based on the data collected at OU-2B during Data Gap Investigation conducted in 2008 (Tetra Tech 2008) and Fall 2007 Basewide Semiannual Monitoring Report (ITSI 2008).
Soil stratum	A	One soil stratum was assumed between the soil surface and the top of contamination or groundwater table.
Thickness of soil stratum A (cm)	182.88	Thickness of stratum A was set to be equal to the depth below grade to groundwater table.
SCS soil type directly above water table/ Soil stratum A SCS soil type	Loamy sand (LS)	Based on the sieve analysis data reported in the OU-2B Remedial Investigation (RI) Report (SulTech 2005) and Table 11 of the U.S. EPA Guidance (U.S. EPA 2004). The U.S. EPA Guidance (U.S. EPA 2004) recommends that texture classification for soil with approximately 12 percent to 25 percent fines (smaller than 0.075 mm in size) should be "Loamy Sand." Based on the sieve analysis data reported in the OU-2B RI Report, the average percentage of fines in fifteen soil samples collected from 1 to 5.5 feet bgs is approximately 15 percent.
Stratum A soil dry bulk density (g/cm ³)	1.66	Average value of dry density based on the geotechnical data reported in the OU-2B RI Report (SulTech 2005). The dry density value used is the average value from eleven samples collected from 0.5 to 5.5 feet below ground surface (bgs).
		Calculated using the following formula per the U.S. EPA Guidance (U.S. EPA 2004): 1 - (Soil dry bulk density – Soil particle density).
Stratum A soil total porosity	0.380	Soil particle density was estimated to be 2.68 grams per cubic centimeter based on the specific gravity data reported in the OU-2B RI Report (SulTech 2005) for a sample collected from 4.5 feet bgs.
Stratum A soil water-filled porosity	0.13	Calculated using the moisture content, dry density and total porosity values reported in the OU-2B RI Report (SulTech 2005). The values for dry density and total porosity are presented above. The moisture content value used is the average value from eleven samples collected from 0.5 to 5.5 feet below ground surface (bgs).
		Building Parameters
Enclosed space floor thickness (cm)	15	Equal to the value of the parameters depth below grade to bottom of enclosed space floor, specified above.
Soil-bldg. pressure differential (g/cm-sec ²)	40	Default value presented in the User's Guide for Subsurface Vapor Intrusion into Buildings (U.S. EPA 2004).
Enclosed space floor length (cm)	3,696	Based on the average commercial structure of 5,000 m ³ (U.S. EPA 2011b).
Enclosed space floor width (cm)	3,696	Based on the average commercial structure of 5,000 m ³ (U.S. EPA 2011b).
Enclosed space height (cm)	366	Based on the height for a commercial structure (U.S. EPA 2011b).
Floor-wall seam crack width (cm)	0.1	Default value presented in the User's Guide for Subsurface Vapor Intrusion into Buildings (U.S. EPA 2004).
Indoor air exchange rate (1/hour)	1	Based on the recommended air exchange rates in DTSC guidance document (DTSC 2005).
Average vapor flow rate into building (liters per minute)	5	Default value presented in the User's Guide for Subsurface Vapor Intrusion into Buildings (U.S. EPA 2004).
		Exposure Parameters
Averaging time for carcinogens (years)	70	Default value presented in the User's Guide for Subsurface Vapor Intrusion into Buildings (U.S. EPA 2004).
Averaging time for noncarcinogens (years)	25	Per the User's Guide for Subsurface Vapor Intrusion into Buildings (U.S. EPA 2004), averaging time for noncarcinogens was set equal to the exposure duration.
Exposure duration (years)	25	Default value for commercial exposure presented in the U.S. EPA guidance documents (U.S. EPA 1991 and U.S. EPA 2004).
Exposure frequency (days)	250	Default value for commercial exposure presented in the U.S. EPA guidance documents (U.S. EPA 1991 and U.S. EPA 2004).
Target risk for carcinogens	1.0E-06	Default value presented in the User's Guide for Subsurface Vapor Intrusion into Buildings (U.S. EPA 2004). Lower end of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP)-defined cancer risk range.
Target hazard quotient for non-carcinogens	1	Default value presented in the User's Guide for Subsurface Vapor Intrusion into Buildings (U.S. EPA 2004).

Note: ^a Values calculated by the model are not listed.

2. REFERENCES

- California Environmental Protection Agency Department of Toxic Substances Control (DTSC). 2005. *Vapor Intrusion Guidance Document – Final Interim.* DTSC/California EPA. 15 December 2004, Revised 7 February 2005
- Innovative Technical Solutions, Inc. (ITSI). 2008. Fall 2007 Alameda Basewide Semi-Annual Groundwater Monitoring Report. April.
- SulTech. 2005. Final OU-2B Remedial Investigation Report Sites 3, 4, 11, and 21, Alameda Point, Alameda, California. August 5.
- Tetra Tech EC, Inc. (Tetra Tech). 2008. Draft Technical Memorandum for Data Gap Sampling at Operable Units 2a and 2b. September 19.
- United States Environmental Protection Agency (U. S. EPA). 1991. Human health evaluation manual, supplemental guidance: "Standard default exposure factors (PDF)". OSWER Directive 9285.6-03.

_____. 2004. User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings. Revised February 22.

_____. 2011a. Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites. November.

_____. 2011b. *Exposure Factors Handbook*. September.

Appendix B Responses to Comments on the Draft Feasibility Study Addendum

This Page Intentionally Left Blank

Comment No.	Comment	Response
1.	 The following comments are related to Table 2 of the Addendum a. The new RSL for heptachlor is 0.0018 ug/l and the EPC concentration noted in the table is 0.032 ug/l. It is not clear why heptachlor is not included as a primary or secondary COC. Also, please clarify if heptachlor will be monitored or not. If not a part of the monitoring plan then please explain why. b. The risk for 1,4-Dioxane has increased to 1.2x10⁻⁰⁴, it is not clear why 1,4-dioxane should not be included as a primary or secondary COC. Please clarify if 1,4-Dioxane will be monitored or not. If not a part of the monitoring plan then please explain why. c. For Bis(2-ethylhexyl) Pthalate- the explanation is not clear about why to exclude it from the primary or secondary COC list. In addition, it will be helpful to receive a figure that shows locations of exceedences for Bis (2-ethylhexyl) Pthalate as compared to the new RSL. 	 a. The rationale for excluding heptachlor from the list of COCs was presented in the Final Operable Unit 2B (OU-2B) Feasibility Study (FS) (Section 5.1.2.1) and repeated in the remarks column of Table 2 of the FS Addendum. The reasons for exclusion include, detection of heptachlor at one location, risk based on the use of maximum detected concentration as exposure point concentration, and uncertainty in quantitation, and detection at low concentration. Since heptachlor is not identified as a COC it will not be monitored. b. 1,4-Dioxane will be added to the list of secondary constituents of concern (COCs) along with metals for the case in which groundwater is considered a potential drinking water source. The secondary COCs will be monitored if the groundwater being considered a potential drinking water source. Since a significant component of 1,4-dioxane risk is attributed to groundwater ingestion; 1,4-dioxane will not be added as a COC (and therefore will not be monitored) for groundwater remedial action for the scenario where OU-2B groundwater is not considered a potential drinking water source. c. The rationale for excluding bis(2-ethylhexyl) pthalate from the list of COCs was presented in the Final OU-2B FS (Section 5.1.2.1) and repeated in the remarks column of Table 2 of the FS Addendum. The locations S11-B15 and S11-B19 with detections of bis(2-ethylhexyl)pthalate less than its MCL of 4 µg/L are presented on Figure 28A of the Final OU-2B FS. It is noted that a groundwater beneficial use exception is applicable to OU2B. As a result, the revised COCs and RAOs outlined in FS Addendum Appendix A are applicable for remedy selection and the cleanup at OU2B.
2.	Please let EPA know about when and how the Navy plans to submit revised risk calculations for commercial-mixed use scenario for review. It is our understanding that the Navy is recalculating the risks for commercial-mixed scenario.	No further risk calculations will be submitted. FS and Addendum present evaluations for two scenarios; residential and commercial. Risks for commercial mixed use scenario are represented by the residential use scenario risk calculations in the Final FS Table 16. The Navy was considering a scenario for residential units above commercial space at the request of the City of Alameda. No studies or comparable evaluations were found as precedent to inform the proposed evaluation. Uncertainty in the scenario assumptions and modeling parameters, including specifics of future construction, lead to either using

Comment	Commo	-4	Despense
No.	Commer		Response the residential or the commercial risk evaluations.
3.	zones w the targe RI/FS sta the RI/FS	x A, page 5 indicates that that the targeted remediation ill be established during RD/RA stage. It is not clear why eted remediation zones were not established during the age. Typically, these types of details are established during S stage. In general, the additional data needed to fine tune al implementation of the remedy is conducted under the stage.	Sections 2.5.1 and 2.5.2 of the FS Addendum state that horizontal and vertical target remediation extents will be <i>finalized</i> during the RD/RA stage. The additional data needed to optimize the actual implementation of the remedy will be conducted under the RD/RA. The FS Addendum uses the conceptual target remediation extents to develop and evaluate groundwater remedial alternatives and estimate costs.
4.	conducte details a	re numerous references in the addendum to the modeling ed in the final OU2B FS. The addendum refers to modeling re located in the Appendix F of the final OU2B FS. There o be many concerns with the modeling effort:	(a)(i) The hydraulic conductivity value of 80 ft/D is only applied at a few locations outside of the plume in Layer 3. Within the plume area of OU-2B, the hydraulic conductivity values are as follows:
		Flow Model	Layer 1 8.0, 1.0, and 10 ft/D
	i.	The hydraulic conductivity used for the third layer	Layer 2 2.0 ft/D Layer 3 24.96 and 44.52 ft/D
		varies between 0.25 - 80 ft/day. The 80 ft/day hydraulic conductivity seems very high. The higher value was used so that the ARM/head range percentage will be around 10% or less.	The majority of the plume is in Layers 1 and 2 and for a majority of the plume the hydraulic conductivity values range from 2 ft/day to 24.96 ft/day.
	ii.	Even after using a 0.25 to 80 ft/day hydraulic conductivity, the ARM/head range for OU2B area are 17.43% and 26.53% for layer 2 and 3, respectively. Much higher than the 10% upper bound mentioned in the final FS.	(a)(ii) The ARM/Head Range corresponding to all model layers within OU-2B is 9.11 percent. Layers 2 and 3 have narrower head range; and the ARM values for each of the three model layers are less than 0.7. Therefore, as stated in Section F2.2 of Appendix F of the final OU-2B FS, the hydraulic calibration is considered acceptable.
	iii.	Please provide rationale for: (a) for using 80 ft/day hydraulic conductivity and (b) why the ARM/head range of more than 10% is acceptable?	(a)(iii) See (a)(i) and (a)(ii) above.
	iv.	Please clarify if the flow model was validated or not. EPA could not locate any information that suggests the model was validated. If the model was not validated, then please explain the reasons for not validating it.	(a)(iv) Model was hydraulically calibrated. Validation of the model entails comparing model predictions to future stresses and resultant values and this is typically not performed at the FS stage. The modeling included the use of site-specific parameters to the maximum extent possible; therefore, it is considered representative of site-specific conditions at OU-2B.
	b.	Transport model – Review of the Appendix F indicates that the transport model was neither calibrated nor validated. Please confirm if the transport model cited in Appendix F of the final FS was calibrated and validated.	In addition, sensitivity analysis was performed by varying the biodegradation rate by a half order of magnitude lower and a half order of magnitude higher than the site specific rate to account for the effect of uncertainties. The results indicated that the cleanup time for the highest
	С.	Furthermore, the addendum indicates that the rational for	degradation rate was approximately 50 percent less than the site specific

Comment		
No.	Comment	Response
	cleaning up to 30 feet bgs is to provide enough buffer zone. The document states that buffer zone was	rate's cleanup time, while the duration for the lowest degradation rate was approximately 100 percent longer than the site specific cleanup rate.
	quantified from the modeling effort documented in the Appendix F of the Final FS. The modeling related comments listed above are for the Appendix F of the Final FS. In Summary:	 (b) Modeling in the FS is used to predict the relative performance of the alternatives. The transport component was not calibrated or validated. A comprehensive concentration dataset over a relatively long time-frame is required for transport calibration/validation in order to approximate the
	 It is very doubtful that EPA can draw any quantitative conclusions from the modeling effort presented in Appendix F. 	modeled plume morphology to the actual distribution of chemicals of potential concern. At the time of the OU-2B groundwater model set up, there was a significant amount of groundwater data for model use,
	ii. The final FS cautions the reader to abstain from using modeling results for quantitative purposes.	however, the majority of that data was collected over the past four years, not the relatively long time frame required to accurately calibrate and validate transport. Therefore, transport calibration was not performed.
	 In addition, the hydraulic conductivity of up to 80 ft/day for Layer 3 in the model is potentially forcing the groundwater to flow thru the site at enormous and unrealistic rates. This high hydraulic conductivity might not give enough residence time for VOCs to diffuse back into layers above. 	(c) The detailed rationale (including the results of groundwater modeling) for treatment of groundwater down to 30 feet below ground surface to provide an adequate buffer to minimize vapor intrusion risk is presented in Section F5 of Appendix F of the OU-2B Final FS. The groundwater modeling estimated that treatment depth to 30 feet bgs will provide an adequate buffer to minimize upper intrusion risk is presented in
	 It is not clear if a sensitivity analysis was conducted for adsorption parameter(s). EPA believes that it is important to understand this sensitivity. The adsorption impacts the 	adequate buffer to minimize vapor intrusion risk due to potential upward diffusion and dispersion of VOCs into shallow groundwater from deeper groundwater.
	amount of available VOCs present in the liquid phase that could go into vapor phase. If more VOCs are adsorbed then relatively less amount of VOCs is available to go from liquid to vapor phase, hence, the vapor risks might be artificially reduced.	It should be noted that the rationale for the location at which vapor intrusion occurs is independently supported (i.e. does not depend on groundwater modeling) by guidance documents issued by various agencies including Department of Toxic Substances Control (DTSC 2011), Interstate Technology and Regulatory Council (ITRC 2007), and Department of Defense (Tri Service 2000). Clearnet interactives (including clarmetives)
	f. Also, please let EPA know if the conceptual site model used for the groundwater use exception request is compatible with the 30 feet bgs cleanup proposal. In other words, please confirm if the stratigraphy or lithologic cross sections used for the groundwater use exception site	Defense (Tri-Service 2009). Cleanup alternatives (including alternatives proposing active shallow groundwater treatment to mitigate potential for vapor intrusion) were developed based on extensive discussions with the regulatory agencies including USEPA, DTSC, and California Regional Water Quality Control Board.
	conceptual model are compatible with the modeling effort under OU2B FS and Addendum.	(d) See (a)(i) and (a)(ii) above.
		(e) The state-of-the science practice is to calculate adsorption coefficient (Kd) from the literature-reported values of organic carbon partitioning coefficient (Koc) and the <i>site-specific value</i> for fraction organic carbon (foc) using the following formula: Kd = Koc x foc. Adsorption coefficient (Kd) used in the OU-2B groundwater model was a calculated value based on

Comment		
No.	Comment	Response the literature reported value of Koc and the <i>site-specific value</i> for foc from
		soil samples taken below the groundwater table at OU-2B and reported in the OU-2B Remedial Investigation Report. The Koc values are dependent only on the properties of the chemical (not on the type of soil) and have been widely reported in literature. Therefore, the use of literature-based Koc value and site-specific foc is reasonable to simulate site-specific adsorption at OU-2B. Sensitivity analysis for adsorption coefficient was not performed because site specific soil values and peer reviewed literature chemical property values were used to derive adsorption potential at OU2B.
		(f) The groundwater use exception does not alter the CSM for the site with the exception that the domestic use exposure pathways, including; drinking water, inhalation while showering, and dermal exposure while showering do not need to considered if groundwater beneath OU-2B is not considered for domestic/potable use. The details regarding the model layers are presented in Section F2.1 of Appendix F of the OU-2B Final FS. The model layers correlate with the lithologies used in the beneficial use evaluation. The upper three layers of the model represent the artificial fill in the west and the Posey/Merritt/San Antonio formation in the east; and a bottom layer represents Yerba Buena Mud.
5.	 It is very difficult to conduct a meaningful comparison of estimated clean up times of different remedy alternatives if the model parameters are not realistic and do not represent the actual site conditions. a. EPA recognizes that models have uncertainties associated with them. We also believe that the modeling uncertainties should not be further exacerbated by using unrealistic input parameters. The modeling uncertainties could increase exponentially, if unrealistic input parameters are used in the model. b. It is important to highlight that once a remedy is selected from a comparative modeling analysis, the associated remedy will be carried over with that remedy. The future decision making and remedy implementation documents will be based on the modeling assumptions used for the remedy selected. 	The groundwater model presented in the Final FS is sufficient to perform relative comparison of cleanup time-frames for remedial alternatives. The model was set up using available site-specific parameters/data including water level elevations, adsorption coefficient, biodegradation rate, and chemical concentrations (realistic input parameters). The sensitivity analysis was conducted and Table 2 of Appendix F of the Final FS shows the cleanup time ranges for decision makers to evaluate when selecting the remedy. The time frame projections are within the accuracy of the model and expectations for an FS. Similarly the costs are within the expected range for FS documents (+50/-30%).

Comment No.	Comment	Response
	 c. It is also possible that we might select a remedy that is not an effective, viable, or reasonable remedy based on an unrealistic modeling effort. d. The clean up time plays a critical role in selecting a remedy for a site. Furthermore, the time for clean up also impacts the remedy implementation and O&M costs. Both the clean up time of a remedy and the associated costs are part of the nine criteria for evaluating and selecting a remedy under the NCP. 	
6. Alternative G-2 /GM-2	 a. It is not clear why the actual feasibility and viability of the In-Situ Thermal Treatment (ISTT) was not evaluated during the FS stage. The ISTT options are left open ended, i.e., it could be Electro Resistive Heating (ERH), Conductive Heating, or Steam Flushing. These three technology options are very different and require very different specific data for their evaluation, construction, and monitoring. In other words, the technology options are not simple variations of the same technology that could be used at the site has been pushed down to the RD/RA stage. Since technical feasibility and its effectiveness were not conducted during the RI/FS, it is not clear if any of these three technologies will be feasible, viable, or effective at OU2B. ii. For example, if groundwater is expected to be high in salinity due to proximity to sea water then groundwater will be more conductive, hence, it is not clear if resistive heating for more conductive groundwater is feasible, viable, or effective. Issues like this continue to be of concern to EPA. iii. The Navy presented an update on the ERH pilot study at the OU2B site at the March 2012 RAB Meeting. It is not clear why the study was not completed in the last four years while the FS was being finalized. 	 (a) Various thermal remediation technologies such as electric resistance heating (ERH) and low-temperature six-phase heating have been tested/evaluated at OU-2B and the results are summarized in the final FS. Therefore, the listed ISTT technologies are expected to be effective. The FS approach with respect to ISTT affords flexibility during the design/implementation phase of the project. In addition, the data available from the previous pilot studies for ISTT technologies is sufficient to perform detailed evaluation of alternatives. Please note that USEPA's guidance on conducting treatability studies under CERCLA (USEPA 1992) recommends tiered approach to treatability studies with options to perform treatability studies during the following stages of CERCLA process: remedy screening, remedy selection and remedial design/remedial action phase (see page 8 of the USEPA guidance). Therefore, treatability evaluations during the FS and RD/RA stage are consistent with USEPA guidance (USEPA 1992). (b) MNA is not proposed as a standalone technology for any OU-2B groundwater remedial alternative. MNA has been combined with active source control and institutional controls for all remedial alternatives (except No Action alternative). Therefore, the evaluation of alternatives (including protectiveness evaluation) in the FS and FS Addendum are based on alternatives as a whole that have been formulated to combine different technologies to achieve the remedial action objectives. Please note that biodegradation (although important) is just one of the natural attenuation mechanisms. The complete definition of MNA per the USEPA's Directive (USEPA 1999) includes physical processes such as dilution and dispersion:

Comment	Comment	Response
No.	Comment Also, it is not clear what happens if the pilot	Response to the reliance on natural attenuation processesThe "natural
	study indicates that ERH is not a viable option.	attenuation processes" that are at work in such a remediation approach
	 Will there be pilot studies for conductive heating and steam flushing? 	include a variety of physical, chemical, or biological processesThese in-situ processes include biodegradation; dispersion; dilution; sorption; volatilization; radioactive decay; and chemical
	 Will conductive heating work with existing utility lines at the site? 	or biological stabilization, transformation, or destruction of contaminants. (USEPA 1999).
	 Finally, is the RD/RA the right stage to do these types of evaluations? 	(c) & (d) The evaluation proposed in Steps 2 through 6 have been
	 b. It is not clear why MNA was carried over as a viable remedy, i.e., how did it pass the protectiveness analysis. The Addendum refers to the final OU2B FS document and the final FS document refers to the EPA guidance on MNA "Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater", EPA/600/R-98/128, September 1998. 	completed through groundwater modeling presented in Appendix F of the final OU-2B FS. The cleanup durations are based on groundwater modeling results and are sufficient to perform detailed and comparative analysis of remedial alternatives.
	 Page 3 of the EPA MNA guidance states that biodegradation is the most important destructive attenuation mechanism, although abiotic destruction of some compounds does occur. The EPA MNA guidance lists six steps for the screening process. They are described in the guidance document from page 27 onwards. 	
	Table 2.3 on page 30 of the EPA MNA guidance document lists analytical parameters and weighting for preliminary screening for anaerobic biodegradation processes.	
	 Page 31 of the EPA MNA guidance states that "If the score totals 15 or more points, it is likely that biodegradation is occurring, and the investigator should proceed to Step 2." 	
	 The guidance provides an example with screening scores less than 15 and states "the investigator can infer that biodegradation is probably not occurring or is occurring too slowly to contribute to natural attenuation at the time of sampling. In this case, the investigator should evaluate whether other natural attenuation 	

Comment No.	Comment	Response
	processes can meet the cleanup objectives of the site (e.g., abiotic degradation or transformation, volatilization or sorption) or select a remedial option other than MNA." iii. Appendix L of the final OU2B FS provides information about the first step of the screening process.	
	 The screening scores for monitoring wells with appropriate weighting factors for anaerobic biodegradation are reported to be: 11, 8, 13, 6, 11, and 3. All the scores are below 15. Please provide rationale for moving forward with 	
	 MNA even if the screening scores are below 15. c. It is not clear how the remaining steps 2 thru 6 as described in the EPA MNA guidance were evaluated in the final OU2B FS or FS Addendum. 	
	 It is not clear how the cleanup duration of 35 years (+/- 50 percents) has been derived. The Note 1 on Figures 19-21 depicting the modeling results states: "<u>These results are not intended to be used as prediction of required restoration durations.</u>" 	
7. Alternative G3/GM-3 (a) and (b)	 Same issues listed under Comment#6 (a) about the ISTT portion of the remedy are applicable for this alternative(s) too. a. It is not clear how did the Navy establish that it will take 3 years under sub-scenario 3(a) and 5 years under sub-scenario 3(b) to achieve commercial RBCs for the shallow groundwater . The shallow groundwater is defined as approximately 30 ft bgs. EPA is assuming that 3 and 5 years were used for cost estimation, please confirm. b. EPA could not locate the modeling simulation in Appendix F that indicates that it will take 15 years (+/- 50 percent) to attain residential RBCs. c. Please clarify the last sentence of the last paragraph under section 3.3.3 on page 9 of the Appendix A. It is not clear how the number of years is developed for different scenarios. 	 (a) The 3 years and 5 years to attain commercial RBCs are engineering estimates for cost estimating purposes based on the proposed conceptual design. (b) The 15 year time frame is estimated based on the modeling results for Alternative G-3 presented on Figures 23 through 25 of Appendix F of the Final OU-2B FS. These figures show the plumes dissipating between the 10 year and 20 year timeframe for Layers 1 and 2 (top 30 feet of the aquifer). Therefore a 15 year duration was assigned. (c) See response to comment (b) above, a specific reference to modeling results for Alternative G-3 will be added to the text.
8.	The toxicity values for tetrachloroethene (PCE) were updated on	Please note that PCE is not a COC for the commercial reuse scenario

Comment No.	Comment	Response
	February 10, 2012 and were posted http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showQuick View&substance_nmbr=0106 Please calculate revised RSLs and risk-based concentrations (RBCs) using the updated toxicity values.	therefore the PCE RBC was not calculated.
9. Appendix A, Section 3, Remedial Action Alternatives	It appears that the descriptions of Alternatives GM-2, GM-3 and GM-3 might be missing the need for institutional controls (ICs) prohibiting residential reuse for areas that exceed residential RBCs. The first mention of ICs to prohibit residential reuse is, "Following attainment of commercial RBCs, ICs would be continued to prevent residential RBCs." However, ICs to prohibit residential RBCs are needed from the beginning of remedy implementation over portions of the plume that do not meet residential RBCs, including areas that will not be treated because they do not exceed commercial RBCs. Please revise the alternative descriptions to include ICs prohibiting residential RBCs.	Sections 3.2 through 3.4 will be revised to specify that ICs to prohibit residential use above the plume including an adequate buffer will be implemented as part of each remedial alternative until residential RBCs are attained.
10. Appendix A, table 5, Summary of Rssumptions for Cost Estimates	Please explain why two applications of ISCO will be sufficient.	The two applications of ISCO are based on the total estimated treatment volume/mass and estimated oxygen demand of approximately 10 grams of oxidant per kilogram of treated material (based on the previously conducted ISCO pilot test at Plume 4-1 and revised target remediation goals – commercial VI RBCs). The estimates in the FS and FS Addendum were based on the quote from ISOTEC (ISCO vendor).

Dhody, Gaurav

From:Wanyoike, CrispinSent:Tuesday, March 20, 2012 5:19 PMTo:Dhody, Gaurav; Singh, HarvinderSubject:FW: Alameda Point - draft OU-2B FS Report Addendum

-----Original Message-----From: Moss, Curtis M CTR NAVFACHQ, BRAC PMO [mailto:curtis.m.moss.ctr@navy.mil] Sent: Tuesday, March 20, 2012 5:00 PM To: Wanyoike, Crispin Cc: Thomas Mulder Subject: FW: Alameda Point - draft OU-2B FS Report Addendum

FYI below, DTSC has no comments on 2B FS Addendum.

Curtis

-----Original Message-----From: James Fyfe [<u>mailto:JFyfe@dtsc.ca.gov</u>] Sent: Monday, March 19, 2012 13:51 To: Moss, Curtis M CTR NAVFACHQ, BRAC PMO; Robinson, Derek J CIV NAVFACHQ, BRAC PMO Cc: Karen Toth; Michelle Dalrymple; Pankaj Arora; Peter Russell; John West Subject: Alameda Point - draft OU-2B FS Report Addendum

Hello Curtis,

DTSC has reviewed the draft Feasibility Study Report Addendum for OU-2B, Alameda Point, dated February 2012. We have no comment on the document.

Thank you, J. Fyfe

James R. Fyfe, P.E. Project Manager Brownfields and Environmental Restoration Program

California Environmental Protection Agency Department of Toxic Substances Control 700 Heinz Avenue, Suite 200 Berkeley, CA 94710 Phone: (510) 540-3850 Fax: (510) 540-3819 jfyfe@dtsc.ca.gov

Dhody, Gaurav

From:Wanyoike, CrispinSent:Wednesday, April 18, 2012 2:03 PMTo:Dhody, GauravSubject:FW: 2B FS Addendum comments

FYI

-----Original Message-----From: Moss, Curtis M CTR NAVFACHQ, BRAC PMO [mailto:curtis.m.moss.ctr@navy.mil] Sent: Wednesday, April 18, 2012 1:36 PM To: Wanyoike, Crispin Cc: Singh, Harvinder Subject: FW: 2B FS Addendum comments

Water Board....

-----Original Message-----From: John West [mailto:JWest@waterboards.ca.gov] Sent: Wednesday, April 18, 2012 13:10 To: Moss, Curtis M CTR NAVFACHQ, BRAC PMO Subject: Re: 2B FS Addendum comments

Curtis,

Water Board staff have no comments except to support EPA's comments, in particular, resolution of disagreements in the contaminant groundwater modeling assumptions and applicability.

Thanks, john

>>> "Moss, Curtis M CTR NAVFACHQ, BRAC PMO" <<u>curtis.m.moss.ctr@navy.mil</u>> 4/18/2012 10:52 AM
>>>
Hi John,

Does the Water Board plan to submit comments on the OU2B draft FS Addendum?

Thanks,

Curtis

Curtis M. Moss, PG Alameda Team Navy BRAC PMO West Office: 619.532.0775

Comment No.	Comment	Response
1.	The authors of the model acknowledge that the level of confidence in the model as a predictive tool is rather low, but the model was used extensively for assessing the remedial options, even though the model authors specifically stated that the model should not be used to predict cleanup times. In part, this low level of confidence may be due to the fact that the flow model was not validated and only partially calibrated and that the transport model was neither calibrated nor validated. The low confidence also is related to other issues discussed below. To improve confidence in the model, the flow model to ensure that the flow and transport model should be both calibrated and validated. A sensitivity analysis should also be completed. Please rerun the model to ensure that the flow and transport models are both calibrated and validated and that a sensitivity analysis is run for each input parameter, including boundary conditions.	The responses to individual components of the comment are provided below: <u>Comment:</u> "The authors of the model acknowledge that the level of confidence in the model as a predictive tool is rather low, but the model was used extensively for assessing the remedial options, even though the model authors specifically stated that the model should not be used to predict cleanup times." <u>Response:</u> The purpose of the OU-2B feasibility study (FS) was to perform a detailed and comparative analysis of alternatives with respect to nine criteria stipulated in the National Oil and Hazardous Substances Control Pollution Contingency Plan (NCP). Groundwater modeling conducted for OU-2B was of appropriate level of detail to support this objective. This modeling approach is consistent with the United States Environmental Protection Agency (USEPA) guidance (USEPA 1988), which states whether or not to use modeling and the level of effort that should be expended is made on the basis of the objectives of the modeling. Groundwater model for OU-2B was developed consistent with its purpose to perform comparative analysis of groundwater remedial alternatives, including <i>relative predictions</i> of remediation time frames and future volatile organic compound (VOC) concentrations. There are inherent uncertainties in any groundwater model, and modeling should not be used as an absolute/definitive predictive tool. The disclaimer in the Final OU-2B FS regarding the use of the model for remediation durations, however, these estimates are considered to be representative of these restoration durations.

Comment		
No.	Comment	Response
		should be both calibrated and validated. A sensitivity analysis should also be completed. Please rerun the model to ensure that the flow and transport models are both calibrated and validated and that a sensitivity analysis is run for each input parameter, including boundary conditions."
		Response Regarding Flow Modeling: The flow model for OU- 2B is calibrated and the calibration results are presented in Section F2.2 of Appendix F of the OU-2B Final FS. Validation/verification of the flow model entails comparing the performance of the calibrated flow model to data obtained from known hydraulic stresses, such data was and is not available and therefore validation/verification was not performed. Absent of a validation dataset, the comparison of the observed to computed heads along with resultant flow regime reflects an appropriate representation of the groundwater flow system at OU 2B.
		A sensitivity analysis for flow model parameters including hydraulic conductivity, recharge, and boundary conditions will be conducted and the results will be presented to USEPA in a revised modeling summary report. It should be noted that this sensitivity analysis provides an understanding of how the input parameters affect the calibrated flow model. These results are not carried through to the contaminant plume transport modeling phase. As a result, the predicted cleanup durations will not change since the transport model only uses the calibrated flow model.
		<u>Response Regarding Transport Modeling:</u> A comprehensive concentration dataset over a relatively long time-frame is required for transport calibration/validation in order to approximate the modeled plume morphology to the actual distribution of chemicals of potential concern. At the time of the OU-2B groundwater model set up, there was a significant amount of groundwater data for model use, however, the majority of that data was collected over the past four years, not the relatively long time frame required to accurately calibrate and validate transport. Therefore, transport calibration was not performed.

Comment No.	Comment	Response
2.	The report (page F3-1) states that "A sensitivity analysis was performed with the degradation half life multiplied by 0.5 and 5." What is the rationale for using "5 times" factor? More importantly, at the bottom of the Table 2 (page F4-1), there is a note indicating that only for Alternative G-1 the sensitivity was performed. For other alternatives the predictive times were based on the results of Alternative G-1. Please provide reasoning and appropriateness to take the predicted time for one alternative and apply the results to a different alternative(s).	Section F3 of Appendix F of the Final OU-2B FS explains the degradation rate (3.1 years per half-life) used in the groundwater model (calculated from site-specific data at Plume 4-1). This site specific degradation rate is 300 times less than the fastest reported TCE degradation rate (0.01 years per half-life) in literature (USEPA 1998). Variability in the values of degradation half-lives are likely but are very difficult to quantify both temporally and spatially. Use of the maximum value observed at Plume 4-1 was considered to be too optimistic for FS purposes, therefore, a sensitivity analysis was run by varying the degradation half-life by a half order of magnitude lower and higher than the site specific calculated value and is based on professional judgment.
		and transport model with each simulation differing only in the parameters/conditions reflective of individual remedial technologies/scenarios that are part of different alternatives. Since the same flow/transport model was used for all remedial alternatives, the response to a change in values of degradation half-life was assumed to be similar for all remedial alternatives. Therefore, sensitivity analysis results corresponding to Alternative G-1 were to estimate the remediation durations for the remaining alternatives.
3.	Model Layers appear to be continuous and of uniform thickness (e.g., the bottom of Layer 2 is set 10 feet below Layer 1). It is unclear how the model addressed the issue of discontinuity (or absence) of some hydrostratigraphic units as depicted in OU 2B cross-sections. Please clarify how the model addressed the discontinuity or absence of hydrostratigraphic units.	The model layers were initially set up based on the average thicknesses and soil type of the site stratum, Layer 1 for the fill, Layer 2 for the shallow bay mud, Layer 3 for the Merritt Sand and associated alluvial fan sediments, and Layer 4 for the Yerba Buena Aquitard. The model layers serve as a generalization of the type of deposits. During model setup, the hydraulic conductivity (k) values were initially based on the geology encountered within a given model grid. These initial k values were representative of the discontinuous nature of the deposits within model layers and were then adjusted during calibration as part of matching the observed hydraulic heads. The spatial variability of calibrated hydraulic heads within different layers of the model account for heterogeneity of geologic deposits.

Comment No.	Comment	Response
4.	The information on General Head Boundary (GHB) and Constant Head (CH) boundary is missing. The text should discuss how the GHB for the Seaplane Lagoon was set up (e.g., the conductance for the boundary condition). Also, it is unclear why the CH boundary was established only for Layer 1. Please explain how the GHB for the Seaplane Lagoon was set up and why the CH boundary was only established for Layer 1. Please provide the water level map that was used to establish the CH boundary.	The Constant Head (CH) boundary was set in Layer 1 only to represent the groundwater table on the upgradient side (east) of the flow model. This boundary was subdivided into four segments to allow lateral variation of the specified head to better reflect groundwater elevations downgradient in the flow model. The head elevation in the CH was initially set to groundwater surface contours extrapolated east from nearby wells, since there was only one layer 1 well located along the CH boundary. These heads were adjusted during the calibration process to improve the flow model heads calibration. The auto sensitivity (AS) feature in Groundwater Vistas was used to vary the CH head elevation by +/- specified head elevation. The results from each AS run were evaluated for improvement to calibration as well as whether the head adjustment made hydrogeologic sense. The General Head Boundaries were setup in a similar fashion as the CH cells. There were six GHB segments in each model layer, for a total of 24 in the flow model. There were GHBs set in each layer on the downgradient sides of the flow model since the monitoring wells showed head variation with depth. Seaplane Lagoon was set up as a single GHB 'zone' with its initial head elevation in the other GHB segments were initially set to groundwater surface contours extrapolated north, west, and south from nearby wells. These heads were adjusted during the calibration process to improve the flow model heads calibration as well as whether the head sut or yry the GHB head elevation by +/- specified head elevation. The results from each AS run were evaluated for improvement to calibration as well as whether the head adjustment made hydrogeologic sense. The conductance terms in the GHB were initially set to approximately the K value of the nearby K-zones along a GHB segment the average of the K values was used. The AS feature was also used to evaluate the GHB conductance terms in a similar fashion as with the head terms.

Comment No.	Comment	Response	
		average groundwater elevations at the Layer 1 wells will be provided in a revised modeling summary report.	
5.	The hydraulic conductivity (K) distribution appears to be the result of the calibration process rather than the actual geology (the bullseye distribution). Some of the K values (e.g., 80 feet per day [ft/day] in Layer 3; zones 40, 41, and 42) are not supported by the site geology, much of which consists of clayey sands and silty sands with finer grained units. Areas with poorly graded sands that may have elevated hydraulic conductivities do not appear to be laterally extensive. Further, site-specific hydraulic conductivity values listed under Section 3.1.2.3 and Table 4 of the final FS are: 2.2E-04 ft/day, and 5.6 ft/day for Site 4; 2.1 ft/day for Site 11; and 2.4 to 7.3 ft/day with an average of 4.4 ft/day for Sites 11/21, which do not support the high hydraulic conductivities used in the model. The rationale for the K-distribution in Layers 3 and 4 must be provided and this distribution should be based on site lithology and site-specific hydraulic conductivities. Please provide the rationale for the K-distribution in Layers 3 and 4 and explain how these values are related to site lithology and site-specific hydraulic conductivities.	The hydraulic conductivities reported in Section 3.1.2.3 and Table 4 of the Final OU-2B FS generally represent data collected in a discrete zone less than 42 feet below ground surface (bgs). Layer 3 extends from approximately 30 feet to 70 feet bgs; therefore, the values in Table 4 may not be representative of Layers 3 and 4 hydraulic conductivities. Layer 3 contains poorly graded sands, silty sands, and clayey sands. The calibrated hydraulic conductivity values for Layer 3 used in the model are within the estimated values range reported in literature for sands, silty sands, and clayey sands (see hydraulic conductivity values in Attachment 1 for fine and medium sands; this table (transmitted previously) was extracted from USEPA Method 9100: Saturated Hydraulic Conductivity, Saturated Leachate Conductivity, and Intrinsic Permeability [USEPA 1986]). There are no K values for the mud of the Yerba Buena Aquitard but it was assumed to be low (0.1 foot per day for majority of the model domain).	
6.	It is unclear how the calibration targets were selected and what the "average" water level map is for the site. Also, most of the 266 targets used in the calibration are in Layer 1 and the calibration statistics for Layers 3 and 4 are rather poor. More importantly, in addition to the statistical results, the model report should include other evidence to support the model calibration. For example, a graph showing the observed vs. computed heads for each model layer is a standard way of showing whether there is a bias in the calibration results. The observed and computed hydraulic gradients (both horizontal and vertical) should be compared. In addition, spatial bias should be evaluated by plotting the residual head differences. Please clarify how the calibration targets were selected, why they are primarily in Layer 1, and provide an "average" water level map for OU 2B. Also, please provide a graph showing the observed vs. computed heads for each model layer and plot residual heads to evaluate spatial bias.	The calibration targets were assigned to model layers based on the geologic stratum in which the screen is located. The calibration target values were based on average water levels from 1991 to 2006 and as reported there were more values available for Layer 1. The water level data from 1991 through 2006 included measured water levels for every month of the year. The depth distribution of the well screens was based on site investigation priorities and thus controlled the distribution of potential head calibration targets. As stated above, a potentiometric map of the average groundwater elevations at the Layer 1 wells will be provided. A graph of observed vs. simulated heads for each model layer will be provided in the revised modeling summary report. Maps showing the spatial distribution of residuals are already provided as Figures 8, and 9A through D. In addition, contours will be added to these maps to show simulated gradient directions. The vertical gradients will be qualitatively evaluated by comparing the simulated and observed for the individual	

Comment No.	Comment	Response
110.		model layers.
7.	Recharge rates are important for the model. It is unclear whether recharge rates vary over the model area (the land use). Further, a sensitivity analysis for this and other parameters should have been conducted. Please explain how recharge rates vary over the model area and conduct a sensitivity analysis.	There are three recharge zones in the flow model. There is a lower recharge rate (6.3 inches/year) over the runway area approximately 1.5 miles west of OU-2B, which is surrounded by open grass fields where runoff would collect;
		There is a higher recharge area (10.4 inches/year) around the elliptical-shaped grass area in the northern part of OU2B where it is assumed the flat grassy area allows a higher recharge rate;
		The majority of the flow model domain has a recharge rate of 9.8 inches per year. Most of the domain has buildings and parking lots with surrounding flat grass, dirt, or gravel areas. It is assumed that the flat non-impervious areas allow recharge from the direct precipitation and runoff from adjacent impervious areas.
		Sensitivity analysis will be performed and the results will be presented to the BCT in the revised modeling summary report.
8.	The water budget results are missing. Please provide a water budget for each model layer.	A water budget [flow mass balance report] will be provided in the revised modeling summary report.
9.	The effective porosity is assumed to be equal to the total porosity (30 percent). Considering the type of the geologic material, this is unlikely. Please correct this in the model.	The report does not equate total porosity to effective porosity. The effective porosity value selected was based on literature values for the type of geologic material encountered (see Attachment 2). MODFLOW uses effective porosity only in the transport model and not in the flow model.
10.	The dispersivity values for Layers 1, 2, and 3 are 25.29, 26.32, and 26.41 feet, respectively. These are rather precise numbers for a parameter which is usually determined by model calibration. It is unclear why the dispersivity in Layer 2 (an aquitard) is practically the same as in Layers 1 and 3. Please explain why the dispersivity of Layer 2 is nearly the same as those of Layers 1 and 3. Also, please explain how the dispersivity values were obtained.	Dispersivity was calculated using the equation for 'alpha-x' cited in the report by Xu, Moujin and Y. Eckstein, 1995, as explained in Section F3 of Appendix F of OU-2B Final FS. This equation is based on the plume length and since the plume in all three layers are of similar length (see Figures 10, 11, and 12 in Appendix F) the dispersivity values are similar.
11.	It is unclear if degradation rates for other volatile organic compounds (VOCs) other than trichloroethene (TCE) were considered and whether TCE represents the worst case scenario. Please discuss whether degradation rates for VOCs other than TCE were considered and whether TCE represents the worst case	TCE is the predominant VOC reported in groundwater at OU- 2B. As such its fate and transport characteristics (including biodegradation) were used to represent the entire VOC plume. The degradation of other VOCs was not simulated since their

Comment		
No.	Comment	Response
	scenario.	mass was included in the total VOC mass (see Section F3.1 - <i>Model Assumptions and Uncertainties</i> in Appendix F of the Final OU-2B FS. To analyze the uncertainty in the degradation rates, a sensitivity analysis was performed by varying the biodegradation rate by a half order of magnitude lower and higher than the calculated site-specific rate. The results of this analysis are presented in Table 2 of Appendix F of the Final OU-2B FS.
		Total VOC mass was modeled for OU-2B using fate and transport characteristics of TCE. This represents a reasonable and conservative scenario since TCE is the predominant VOC in OU-2B groundwater. There are less likely scenarios where this approach may not represent a worst-case scenario, e.g. where degradation of other VOCs occurs at a considerably slower rate. Therefore, the sensitivity analysis performed as part of OU-2B groundwater modeling presents ranges of predicted time-frames corresponding to changes in values of degradation rates for the remedial alternatives.
12.	The procedure for determining the retardation factor was not fully explained. It is unclear if the total organic carbon (TOC) values were for the aquifer material (the text suggests that TOCs were based on groundwater sampling results) or how these the foc values were obtained. Specifically, the values for the retardation factors for TCE and other constituents should be specified. Please discuss this	Retardation factor was not specified by input but calculated by the model software based on the parameters such as bulk density, sorption coefficient, and porosity. The retardation factor is calculated using the following equation: R = 1+ [Bd * Kd] / Porosity
	issue.	which includes the following terms:
		Kd [sorption coefficient] is calculated based on the values of foc (fraction organic carbon) and Koc (organic carbon partitioning coefficient); The foc was based on TOC values from soil samples taken below the groundwater table at OU-2B from October through December 2007 and reported in the OU- 2B Remedial Investigation Report. The average of the TOC values for the OU2B area was converted to foc value.
		The Koc value was the literature-reported value (Montgomery 2000).
		The bulk density was calculated using the porosity value using the equation $Bd = 2.65(1 - porosity)$.
13.	The text did not explain how the concentration source(s) was/were implemented in the transport model. For example, the geometry of the sources should be	The current site plume in the transport model was simulated as a dissolved plume for alternatives that have active source zone

Reviewer: Pankaj Arora, LEED AP, Superfund Division, Environmental Protection Agency. Comments Dated May 25, 2012.

Comment No.	Comment	Response
	specified. Please clarify.	treatments and simulated using initial VOC concentrations for alternatives that do not have active source zone treatments (i.e., G-1 and G-4). No continuous/depleting secondary sources (therefore no specific geometry) were simulated. Three of the transport simulations (i.e. simulations for Alternatives G-2, G-3a, and G-3b) were setup with the plume zones greater than 10 ppm being significantly reduced by various active source zone treatments to 1 ppm.
14.	The sensitivity analysis on the model predictions (once the model is calibrated and validated) should be included in the report. Please ensure that the sensitivity analysis is included in the model report.	Please see response to Comment #1. A sensitivity analysis for flow model parameters including hydraulic conductivity, recharge, and boundary conditions will be conducted and the results will be presented to USEPA in a revised modeling summary report.
15.	Please provide rationale for using +/- 50% range for the predicted clean up times from modeling simulations. For example, why it is not +/-30% or +/- 65% etc. etc.	The +/- 50% range (in years) represents an approximate average variation in predicted remediation time-frames corresponding to 0.5 times and 5 times the site-specific degradation rate.

References:

Montgomery, John, H. 2000. Groundwater Chemicals - Desk Reference, Third Edition, CRC Press LLC

U.S. Environmental Protection Agency (USEPA). 1986. Method 9100: Saturated Hydraulic Conductivity, Saturated Leachate Conductivity, and Intrinsic Permeability. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/9100.pdf.

U.S. Environmental Protection Agency (USEPA). 1988. Guidance on Remedial Actions for Contaminated Ground Water at Superfund Sites. EPA/540/G-88/003. December.

United States Environmental Protection Agency (U.S. EPA). 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. Office of Research and Development. EPA/600/R-98/128. September.

Attachment 1

 Table of Hydraulic Conductivity Values USEPA Method 9100: Saturated Hydraulic Conductivity, Saturated Leachate Conductivity, and Intrinsic Permeability (USEPA 1986)

This Page Intentionally Left Blank

HYDRAULIC CONDUCTIVITIES ESTIMATED FROM GRAIN-SIZE DESCRIPTIONS (In Feet Per Day)

Grain-Size Class or Range From Sample Description	Deg Poor	ree of Sort Moderate	ing Well	Slight	Silt Conter Moderate	t High
Fine-Grained Materials						
Clay Silt, clayey Silt, slightly sandy Silt, moderately sandy Silt, very sandy Sandy silt Silty sand		Le	ss than 1 - 4 5 7 - 8 9 - 1 11 13			
<u>Sands and gravels</u> (1)						
Very fine sand Very fine to fine sand Very fine to medium sand Very fine to coarse sand Very fine to very coarse sand Very fine sand to fine gravel Very fine sand to medium gravel Very fine sand to coarse gravel Fine sand Fine to medium sand Fine to coarse sand Fine to very coarse sand Fine sand to fine gravel Fine sand to medium gravel Fine sand to coarse gravel	13 27 36 48 59 76 99 128 27 53 57 70 88 114 145 67	20 27 41-47 - - - 40 67 65-72 - - - - - - - - - - - - - - - - - -	27 - - - 53 - - - - - - - - -	23 24 32 40 51 67 80 107 33 48 53 60 74 94 107	19 20 27 31 40 52 66 86 27 39 43 47 59 75 87	13 13 21 24 29 38 49 64 20 30 32 35 44 57 72
Medium sand Medium to coarse sand Medium to very coarse sand Medium sand to fine gravel Medium sand to medium gravel Medium sand to coarse gravel Coarse sand Coarse to very coarse sand	67 74 84 103 131 164 80 94	80 94 98-111 - - 107 134	94 - - - 134	64 72 71 84 114 134 94 94	51 57 61 68 82 108 74 75	40 42 49 52 66 82 53 57
Coarse sand to fine gravel Coarse sand to medium gravel Coarse sand to coarse gravel	116 147 184	136-156	- -	107 114 134	88 94 100	68 74 92

(1) Reduce by 10 percent if grains are subangular. Source: Lappala (1978).

(continued)

Grain-Size Class or Range		Degree of Sorting			Silt Content		
From Sample Description	Poor	Moderate	Well	Slight	Moderate	High	
Sands and Gravels ⁽¹⁾							
Very coarse sand	107	147	187	114	94	74	
Very coarse sand to fine gravel	134	214	-	120	104	87	
Very coarse sand to medium gravel	1270	199-227	-	147	123	99	
Very coarse sand to coarse gravel	207	-	-	160	132	104	
Fine gravel	160	214	267	227	140	107	
Fine to medium gravel	201	334	-	201	167	134	
Fine to coarse gravel	245	289-334	-	234	189	144	
Medium gravel	241	231	401	241	201	160	
Medium to coarse gravel	294	468	-	294	243	191	
Coarse gravel	334	468	602	334	284	234	

(1) Reduce by 10 percent if grains are subangular. Source: Lappala (1978). Attachment 2 Representative Porosity Values This Page Intentionally Left Blank

	Representa	ative Porosity V	Values		
Material	Total Porosity, p_t		Effective Porosity, p_e		
	Range	Arithmetic Mean	Range	Arithmetic Mean	
Sedimentary material					
Sandstone (fine)	-	-	0.02 - 0.40	0.21	
Sandstone (medium)	0.14 - 0.49	0.34	0.12 - 0.41	0.27	
Siltstone	0.21 - 0.41	0.35	0.01 - 0.33	0.12	
Sand (fine)	0.25 - 0.53	0.43	0.01 - 0.46	0.33	
Sand (medium)	-	-	0.16 - 0.46	0.32	
Sand (coarse)	0.31 - 0.46	0.39	0.18 - 0.43	0.30	
Gravel (fine)	0.25 - 0.38	0.34	0.13 - 0.40	0.28	
Gravel (medium)	-	-	0.17 - 0.44	0.24	
Gravel (coarse)	0.24 - 0.36	0.28	0.13 - 0.25	0.21	
Silt	0.34 - 0.51	0.45	0.01 - 0.39	0.20	
Clay	0.34 - 0.57	0.42	0.01 - 0.18	0.06	
Limestone	0.07 - 0.56	0.30	~0 - 0.36	0.14	
Wind-laid material					
Loess	-	-	0.14 - 0.22	0.18	
Eolian sand	-	-	0.32 - 0.47	0.38	
Tuff	-	-	0.02 - 0.47	0.21	
Igneous rock					
Weathered granite	0.34 - 0.57	0.45	-	-	
Weathered gabbro	0.42 - 0.45	0.43	-	-	
Basalt	0.03 - 0.35	0.17	-	-	
Metamorphic rock					
Schist	0.04 - 0.49	0.38	0.22 - 0.33	0.26	

A hyphen indicates that no data are available.

Source: McWorter, D.B., and D.K. Sunada, 1977, Groundwater Hydrology and Hydraulics, Water Resources Publications, Fort Collins, Colo. (1977) as reported in the following: Loureiro et. al. 1993. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil. This Page Intentionally Left Blank

Subject: U.S.EPA/Tech Law Comments Made During the Conference Call with AECOM dated 19 June 2012. Conference Call discussion matter was Groundwater Modeling performed as part of the *Final Feasibility Study, Operable Unit 2B, Installation Restoration Sites 3, 4, 11, and 21, Alameda Point, Alameda, California.*

Note to the Reviewer: The following table presents the clarifications requested by U.S. EPA/TechLaw during the subject conference call. This table is not intended to provide responses to all U.S. EPA comments or resolve all the issues discussed during the conference call.

Commenters: Dr. Milovan Beljin and Ms, Karla Brasaemle, TechLaw, Inc.

Comment No.	Requested Clarifications	Response
1.	Will the proposed active treatment of the hot-spot areas under Alternatives G-2, G-3, GM-2, and GM-3 extend to depths greater than 30 feet below ground surface?	Yes, the proposed active hot-spot treatment (in-situ thermal treatment, in-situ chemical oxidation, and/or in-situ bioremediation, as appropriate) under Alternatives G-2, G-3, GM-2, and GM-3 will extend to depths greater than 30 feet below ground surface in the hot-spot areas where concentrations of total volatile organic compounds (VOCs) greater than 10,000 micrograms per liter are reported at depths greater than 30 feet.
2.	What are the values of total and effective porosities used in the model?	The OU-2B model used only one porosity value (30 percent) as input parameter. This porosity value is equivalent to the effective porosity and is reasonable based on literature values for the type of geologic material encountered (see Attachment 1). The predominant soil types for OU-2B aquifer include poorly-graded sands, silty sands, and clayey sands (see Figures 8 through 11 of the Final OU-2B Feasibility Study). The table in Attachment 1 shows that the arithmetic mean values of effective porosity for sands range from 30 percent to 33 percent.
3.	What value of porosity was used in the retardation factor calculation? Was this value total porosity or effective porosity?	The equation for the calculation of retardation factor uses effective porosity value as input parameter as recommended by the following two references: (1) the attached paper from Groundwater journal (downloaded from http://info.ngwa.org/gwol/pdf/910655328.PDF), and (2) the U.S. EPA guidance document on partition coefficient (U.S. EPA 1999). The OU-2B model used an effective porosity value of 30 percent for retardation factor calculation.
4.	What is the value of retardation factor used in the model?	 The calculated retardation factor is 1.67. The retardation factor is calculated using the following equation: R = 1+ [Bd * Kd] / Porosity which includes the following terms: Bd (bulk density) = 100 pounds per cubic feet (lb/ft³). Kd (sorption coefficient) = 0.001999 lb/ft³ [calculated using foc value of 0.0014; Koc value of 1.3975 lb/ft³] Effective porosity = 0.3

Subject: U.S.EPA/Tech Law Comments Made During the Conference Call with AECOM dated 19 June 2012. Conference Call discussion matter was Groundwater Modeling performed as part of the *Final Feasibility Study, Operable Unit 2B, Installation Restoration Sites 3, 4, 11, and 21, Alameda Point, Alameda, California.*

Note to the Reviewer: The following table presents the clarifications requested by U.S. EPA/TechLaw during the subject conference call. This table is not intended to provide responses to all U.S. EPA comments or resolve all the issues discussed during the conference call.

Commenters: Dr. Milovan Beljin and Ms, Karla Brasaemle, TechLaw, Inc.

References:

United States Environmental Protection Agency (U.S. EPA). 1999. Understanding Variation in Partition Coefficient, Kd, Values. EPA 402-R-99-004A. August. http://www.epa.gov/rpdweb00/docs/kdreport/vol1/402-r-99-004a.pdf Attachment 1 Representative Porosity Values This Page Intentionally Left Blank

	Representa	ative Porosity V	Values		
Material	Total Porosity, p_t		Effective Porosity, p_e		
	Range	Arithmetic Mean	Range	Arithmetic Mean	
Sedimentary material					
Sandstone (fine)	-	-	0.02 - 0.40	0.21	
Sandstone (medium)	0.14 - 0.49	0.34	0.12 - 0.41	0.27	
Siltstone	0.21 - 0.41	0.35	0.01 - 0.33	0.12	
Sand (fine)	0.25 - 0.53	0.43	0.01 - 0.46	0.33	
Sand (medium)	-	-	0.16 - 0.46	0.32	
Sand (coarse)	0.31 - 0.46	0.39	0.18 - 0.43	0.30	
Gravel (fine)	0.25 - 0.38	0.34	0.13 - 0.40	0.28	
Gravel (medium)	-	-	0.17 - 0.44	0.24	
Gravel (coarse)	0.24 - 0.36	0.28	0.13 - 0.25	0.21	
Silt	0.34 - 0.51	0.45	0.01 - 0.39	0.20	
Clay	0.34 - 0.57	0.42	0.01 - 0.18	0.06	
Limestone	0.07 - 0.56	0.30	~0 - 0.36	0.14	
Wind-laid material					
Loess	-	-	0.14 - 0.22	0.18	
Eolian sand	-	-	0.32 - 0.47	0.38	
Tuff	-	-	0.02 - 0.47	0.21	
Igneous rock					
Weathered granite	0.34 - 0.57	0.45	-	-	
Weathered gabbro	0.42 - 0.45	0.43	-	-	
Basalt	0.03 - 0.35	0.17	-	-	
Metamorphic rock					
Schist	0.04 - 0.49	0.38	0.22 - 0.33	0.26	

A hyphen indicates that no data are available.

Source: McWorter, D.B., and D.K. Sunada, 1977, Groundwater Hydrology and Hydraulics, Water Resources Publications, Fort Collins, Colo. (1977) as reported in the following: Loureiro et. al. 1993. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil. This Page Intentionally Left Blank

Attachment 2 Research Paper – Groundwater Journal This Page Intentionally Left Blank

Simple Derivation of the Retardation Equation and Application to Preferential Flow and Macrodispersion

by Herman Bouwer^a

Abstract

The equation to calculate the retardation factor of sorbing chemicals moving in aqueous solution through aquifers and vadose zones is derived using a linear sorption isotherm and a mass-balance approach. The procedure is very simple and clearly illustrates the roles of porosity and water content, including those for saturated flow, unsaturated flow, and preferential flow or other systems with both mobile and immobile phases of the water. Applications of the equation to preferential flow in the vadose zone and macrodispersion in a layered aquifer are illustrated with numerical examples for hypothetical cases.

Introduction

N

The formula most often found in the literature for calculating the retardation factor from the distribution coefficient and aquifer properties is (see, for example, Freeze and Cherry, 1979)

$$\mathbf{R}_{t} = 1 + \frac{\rho_{b}}{n} \mathbf{K}_{d} \tag{1}$$

where R_t = retardation factor (linear actual velocity of water divided by linear transport velocity of chemical in solution; dimensionless); ρ_b = dry bulk density of aquifer or vadose zone (g/cm³); n = porosity (volume fraction, dimensionless); and K_d = distribution coefficient (cm³/g). The parameter K_d is the slope of the linear portion of the adsorption isotherm (Freeze and Cherry, 1979). Use of K_d assumes a low enough water velocity for sorption to be at equilibrium. Because $\rho_b K_d$ must be dimensionless, the dimension of K_d is the reciprocal of that of bulk density. The common unit of K_d is cm³/g or ml/g. Values of K_d range from 0 for nonsorbing solutes to more than 1,000 cm³/g for strongly sorbing (hydrophobic) solutes and fine soils with substantial organic carbon (Freeze and Cherry, 1979).

Equation (1) is for saturated flow. According to Freeze and Cherry (1979), equation (1) was developed on an "empirical basis" by Vermeulen and Hiester (1952) for use in chemical engineering and was first applied to ground-water situations by Higgins (1959) and Baetslé (1967, 1969). Roberts et al. (1980 and 1982), McCarty et al. (1981), and Bear and Veruijt (1987) derived equation (1) from the general transport equation, which is the differential equation describing solute concentration changes in relation to time, distance, dispersion coefficient, water velocity, soil bulk density, porosity, mass of solute per unit dry mass of soil, and degradation of solute. The equation is applicable to one-dimensional, horizontal, single-phase flow in saturated, unconsolidated, homogeneous porous media. For unsaturated flow, it is common practice to replace n in equation (1) by the volumetric water content θ . In the following paragraphs, equation (1) is derived with a simple mass-balance approach that clearly illustrates the roles of n and θ , and how the equation should be used for unsaturated flow and preferential flow or other systems with both mobile and immobile water, or relatively fast and slow-moving water. Where preferential flow is caused by spatial variability or other heterogeneity, soil properties in the dominant flow paths may differ from those in the rest of the soil. In those cases, downward flow in the vadose zone may have to be treated as flow through a number of vertical columns, each with its own values of retardation factor, effective water content, hydraulic conductivity, and other pertinent characteristics.

^aU.S. Water Conservation Laboratory, USDA-ARS, 4331 E. Broadway Rd., Phoenix, Arizona 85040.

Received January 1990, revised May 1990 and October 1990, accepted June 1990.

Discussion open until July 1, 1991.

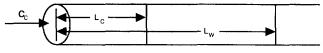


Fig. 1. Geometry and symbols for water and chemical movement.

Derivation of Retardation Equation

Figure 1 depicts a flow tube of unit cross-sectional area in an aquifer or vadose zone (vertical or horizontal) with pure water flowing through it. Water with a dissolved sorbing chemical at concentration C_c then starts flowing through the flow tube, entering at the left. After a certain time t, the water introducing the chemical into the flow tube has advanced a distance L_w and the chemical a distance L_c (piston flow or point of half concentration on breakthrough curve). Thus, the retardation coefficient R_t is L_w/L_c. The volume of water that has entered the flow tube in time period t is L_w θ , where θ is the volumetric water content of the porous material. If the material is saturated, $\theta = n$; if it is unsaturated, $\theta < n$. If there is mobile and immobile water, θ is the volume fraction of the mobile water only.

The total amount of chemical transported into the flow tube at time t is $L_w \theta C_c$. All of this chemical is stored in the L_c -section of the flow tube. Of this total, $L_c \theta C_c$ is in solution in the water phase, and the rest, or $L_w \theta C_c - L_c \theta C_c$, is adsorbed to the solid phase. The mass of the solid phase in section L_c is $(1 - n) L_c \rho$, where n is the porosity of the material, and ρ is the mass density of the solid phase (sand, gravel, rock, etc.). For unconsolidated materials, ρ is about 2.65 g/cm³. Because the distribution coefficient K_d is the mass of chemical adsorbed to the solid phase per unit mass of solid phase divided by the concentration of the chemical in the water, K_d can be expressed as

$$K_{d} = \frac{(L_{w}\theta C_{c} - L_{c}\theta C_{c})/(1-n)L_{c}\rho}{C_{c}}$$
(2)

Solving this equation for L_w yields

$$L_{w} = \frac{K_{d}(1-n)L_{c}\rho + \theta L_{c}}{\theta}$$

Dividing this equation by L_c gives the retardation factor $R_t = L_w/L_c$ or

$$\mathbf{R}_{t} = 1 + \mathbf{K}_{d} \frac{(1 - n)\rho}{\theta}$$
(3)

Because $(1 - n)\rho$ is the dry bulk density of the solid phase, and $\theta = n$ for saturated and full-matrix flow, equation (3) is identical to equation (1). Since equation (3) is applicable to flow in any direction, it can be used for downward flow in the vadose zone as well as for horizontal flow in the aquifer. If there is no interaction between the solute and the soil, $K_d = 0$ and $R_t = 1$, meaning that the solute moves as fast as the water. Anion exclusion can produce an "acceleration" of the pore flow. This can lead to observed "effective" values of R_t of less than one.

Equation (3) illustrates that the use of actual water content θ instead of porosity n in equation (1) is correct

when applying equation (1) to unsaturated flow. As a matter of fact, the preferred way to write the equation for R₁ is with θ rather than n in the denominator, as in equation (3). The derivation of equation (3) also illustrates that where there is preferential flow or other flow with mobile and immobile phases of the water, θ should include only the water that is moving, or the "effective" water content. Diffusion of the chemical from the mobile into the immobile water may then have to be taken into account (Bear and Verruijt, 1987). Use of the effective θ would also allow better distinction between retardation effects due to sorption, and acceleration effects due to preferential flow or anion exclusion (van Genuchten and Wierenga, 1986). For unsaturated flow, the only variable in equation (3) is θ . Assuming that there is enough film flow and other contact between the liquid and the solid phase for K_d to remain constant, R_t thus is essentially inversely proportional to θ . The underlying assumption for equation (3) is, of course, ideal sorption. This includes instantaneous sorption and equilibrium between the chemical sorbed to the solid phase and that still remaining in solution, isotherm linearity and sorption-desorption singularity. These assumptions are not always met, and sorption nonideality may have to be considered (Brusseau and Rao, 1989). More knowledge of the effects of θ , mobile and immobile water, and sorption on K_d is needed.

Application to Preferential Flow

Preferential flow can be caused by many factors, including macropores (cracks, rootholes, wormholes, structural development), instability of flow (fingering), and micro spatial variability (Amoozegar-Fard et al., 1982; Beven and Germann, 1982; Bowman and Rice, 1986a, b; Bowman et al., 1987; Dao et al., 1979; Germann and Beven, 1985; Hagerman et al., 1989; Jaynes et al., 1988; Kanchanasut et al., 1978; Rice et al., 1986; Scotter, 1978; Thomas and Phillips, 1979; Tyler and Thomas, 1977; White, 1985a, b). Reference is also made to the entire December 1988 issue of The Journal of Contaminant Hydrology, which under the editorship of Peter F. Germann, presents 15 articles on "rapid and far-reaching hydrologic processes in the vadose zone" (Germann, 1988). Sometimes, preferential flow occurs in soils without obvious macropores. In that case, preferential flow may be caused by micro spatial variability. Instability of downward flow and "fingering" (Figure 2) can occur in permeable soil that is overlain by much less permeable soil (Samani et al., 1989). Because the fingering type of preferential flow is not caused by macropores or micro spatial variability, the underlying permeable soil can actually be quite uniform. For such a uniform soil, the effect of fingering on the rate of chemical movement through the vadose zone can be calculated readily, as shown in the following numerical example for a hypothetical situation.

The flow through the less permeable top layer is assumed to be uniformly distributed at a rate of 40 cm/yr (Figure 2), which is a reasonable order of magnitude of annual downward movement of water below irrigated soils in hot, dry climates and below nonirrigated soils in humid climates. The flow in the underlying, more permeable material, then, can be unstable and can be concentrated in fin-

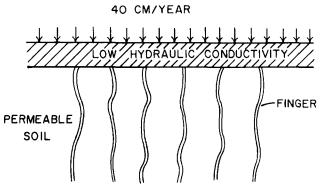


Fig. 2. Preferential flow or fingering in unsaturated permeable soil underlying much less permeable material.

gers. Assuming that the cross-sectional area of the fingers is 0.1 of the total horizontal area ("fingering ratio"), the Darcy flow in the fingers thus is 400 cm/yr. To calculate the rate of downward movement of a solute through the fingers, the value of K_d and the relation between (unsaturated) hydraulic conductivity K and volumetric water content θ for the underlying permeable soil must be known. In this example, K_d will be taken as 10 cm³/g, and the relation between K and θ will be taken as the one for Rubicon sandy loam presented by Topp (1969) (see also Bouwer, 1978), and shown as Figure 3. The dry bulk density of the underlying permeable soil will be taken as 1.56 g/cm³, based on a solid density of 2.6 and a porosity of 40%.

The flow in the fingers will be considered as entirely due to gravity, so that the hydraulic gradient is 1, and K in the fingers is equal to the Darcy flow, in this case 400 cm/yr or 7.6×10^{-4} cm/min. Figure 3 shows that the value of θ corresponding to this K-value is 0.24. Thus, the actual downward velocity of water in the fingers is 400/0.24 = 1,667 cm/yr. R_t for K_d = 10 is calculated with equation (3) as $1 + 10 \times 1.56/0.24 = 66$, so that the chemical moves downward in the fingers at a rate of 1,667/66 = 25.2 cm/yr.

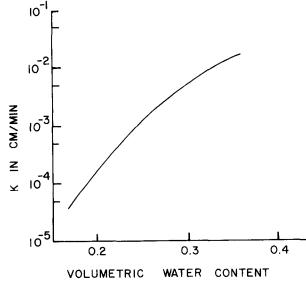


Fig. 3. Relation between K and θ for permeable soil in Figure 2.

Without fingering (fingering ratio of 1), the Darcy flow in the permeable soil would be 40 cm/yr, for which the corresponding θ is 0.18. Rt would then be 87.7, and the rate of chemical movement 2.53 cm/yr. This shows that a fingering ratio of 0.1 increases the rate of downward chemical movement by a factor of 10 compared to no fingering (complete matrix flow). Similar calculations show that for a fingering ratio of 0.01, the rate of chemical movement is 251 cm/yr, or about 100 times faster than for no fingering. A fingering ratio of 0.5 gives a chemical movement of 5.06 cm/year, or about twice the rate for no fingering. Thus, for this case, the rate of chemical transport to ground water is essentially inversely proportional to the fingering ratio. This shows that compounds with high K_d can still be relatively mobile in the underground environment. Models to predict downward movement of chemicals to ground water must take preferential flow into account. This poses a severe challenge (Glass et al., 1988). A simple approach would be to consider preferential flow as a combination of fast and slow transport (through the preferential flow paths and the rest of the soil matrix, respectively) with a diffusion link between the two.

Macrodispersion

Transport of solutes in ground water often is complicated by heterogeneity of the aquifer and dominated by the most permeable materials which also tend to have the lowest retardation factors. This is a form of macropreferential flow, causing macrodispersion of the chemicals transported by the ground water. Dispersion coefficients then tend to be scale-dependent, increasing with increasing distance between the point where the chemicals enter the ground water and the location of the well where ground-water quality is monitored and breakthrough curves are determined. This scale dependency is caused by the fact that heterogeneity in the system increases with increasing distance between the pollution source and the point where the breakthrough is monitored (Kahn and Jury, 1990). As always, the main difficulty in dealing with heterogeneous media is characterization of underground conditions and simplification to manageable systems.

If the system is layered, the hydraulic conductivity, thickness, hydraulic gradient, porosity or effective water content, and retardation factor for the chemical in question must be known for each layer. The breakthrough curve for the chemical a certain distance away can then be estimated by assuming piston flow transport in each layer. This produces a step breakthrough curve, through which a smooth curve can be drawn. This procedure will be illustrated for a hypothetical, four-layered aquifer system (Figure 4). The hydraulic gradient is taken as 0.01 for all layers, and full matrix flow is assumed in each layer so that the pore velocity is equal to the Darcy velocity divided by the porosity. The breakthrough curve is calculated for a completely penetrating well at 1,000 m from the pollution source.

In Table 1, the four layers of the aquifer in Figure 4 are listed in decreasing order of hydraulic conductivity. The first column of Table 1 shows the values of the hydraulic conductivity in m/day for each layer. The second column shows the thickness D of each layer in m, and the third column the

K m/day	D m	T m²/day	Rt	n	v _D m/day	v _p m/day	v _c m/day	t days	q m³/day	Σq	C/C_0
										0	0
20	2	40	5	0.30	0.2	0.667	0.133	7.5×10^{3}	0.4	0.4	0.00
10	10	100	10	0.25	0.1	0.4	0.04	25×10^3	1	0.4	0.23
										1.4	0.8
5	5	25	15	0.20	0.05	0.25	0.0167	60×10^3	0.25		
1	10	10	20	0.15	0.01	0.0667	0.00333	300×10^3	0.1	1.65	0.94
I	10	10	20	0.15	0.01	0.0007	0.00555	500 × 10	0.1	1.75	1

Table 1. Parameters of Hypothetical, Four-Layered Aquifer and Calculation of Step Breakthrough Curve

transmissivity T of each layer (T = KD). Values of R_1 (fourth column) were selected so that they increase with decreasing K to account for greater adsorption in the less permeable and, hence, finer materials. Porosities (n, fifth column) were selected smaller for the less permeable (and presumably more graded) materials. Assuming a hydraulic gradient of 0.01 in all layers, Darcy velocities v_D are calculated in the sixth column. These values are divided in the seventh column by n to give the pore velocities, which, in turn, are divided in the eighth column by the retardation factor, to give the velocities of the chemical in solution. Travel times for 1,000 m are calculated in column 9. Volume rates of flow in each layer per unit width of layer (q = 0.01 T)are calculated in column 10. The sum of these values is 1.75 m^{3}/day (column 11), which is the total flow g_{t} per unit width in the four layers. Assuming a fully penetrating well, 1,000 m downgradient from the pollution source, the first arrival of the chemical occurs after 7,500 days or 20.5 years (top layer). At that point, the chemical-laden flow q_c makes up 0.4/1.75 = 0.23 of the actual flow q_t through the aquifer (column 11) in Table 1). Thus, the relative concentration of the chemical (concentration C in water from well divided by concentration C_0 of chemical in ground water at pollution source) in the well water is then also 0.23 (column 12, Table 1). This concentration remains constant until the chemical from the

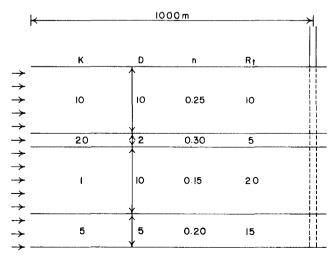


Fig. 4. Hypothetical four-layered aquifer system with plane entry of chemical on left and breakthrough in completely penetrating well on right.

second layer arrives at the well. This happens after 25,000 days (68 years) when the flow of contaminated water q_c at the well increases to 0.4 + 1 = 1.4 m/day (column 11, Table 1), or 0.8 of the total flow q_t in the four layers. Thus, at this time, C/C₀ in the well water also increases to 0.8 (column 12, Table 1). Similarly, it can be calculated that C/C₀ in the well increases to 0.94 after 60,000 days (164 years) when the chemical in the third layer arrives at the well site, and to 1 after 300,000 days (822 years), when the chemical from the fourth layer also arrives at the well. The resulting step breakthrough function is shown in Figure 5. A smooth curve was sketched through the center points of each vertical step.

The curve resembles a parabola with pronounced tailing and no longer shows the typical symmetrical sigmoid shape for dispersion in homogeneous materials. Also, the point of $C/C_0 = 0.5$, which theoretically is reached after one pore volume has passed through a homogeneous medium without adsorption and retardation of the chemical, now occurs when 7.2 pore volumes have moved through the system. This took about 23,000 days. One pore volume is $1,000 (2 \times 0.3 + 10 \times 0.25 + 5 \times 0.2 + 10 \times 0.15) = 5,600 \text{ m}^3$. As can be expected, the value of 7.2 is relatively close to the R_t of 5 of the most permeable layer, which dominates the transport process and initial arrival of the chemical at the well site. As a matter of fact, the number of pore volumes necessary to produce a C/C_0 value of 0.5 on the breakthrough curve for a certain solute could be used in field studies to estimate the average retardation factor of the more permeable formations in the aquifer system. Tailing of

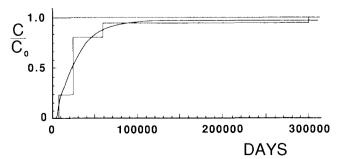


Fig. 5. Step breakthrough curve for arrival times and concentration increases calculated in Table 1, and smooth curve sketched through step increases.

breakthrough curves for more strongly sorbing compounds has also been observed in field studies (Roberts et al., 1990).

When the number of pore volumes for $C/C_0 = 0.5$ is much larger than 1, retardation is significant, and an "overall" dispersion coefficient for the entire system cannot be calculated from the breakthrough curve because the resulting value is meaningless where there is heterogeneity and retardation. If, however, the number of pore volumes at $C/C_0 = 0.5$ appears to be essentially one, there is little or no adsorption and retardation in the system, and the observed breakthrough curve can be used to calculate "the" dispersion coefficient of the layered aquifer system, using, for example, the simple equation developed by Kirkham and Powers (1972). The equation (see also Bouwer and Rice, 1984) is

$$D_{c} = \frac{v_{p}L}{4\pi s^{2}}$$
(4)

where D_c = dispersion coefficient; v_p = pore velocity; L = length of travel through porous medium; and s = slope (tangent of angle with horizontal) of breakthrough curve at relative concentration of 0.5 and one pore volume (relative concentration on ordinate, pore volumes on abscissa for evaluation of tangent).

When the breakthrough curve for the system in Table 1 is calculated with R_t values of one, equation (4) yields a dispersion coefficient of 36 m²/day for the four-layered aquifer system.

Restoration

Preferential flow in aquifers and vadose zones increases the number of pore volumes of clean water that must be passed through the system before contaminants are sufficiently removed from the plume or other affected area. This is because of the long time required to pass the desired number of pore volumes through the less permeable zones while all the time water keeps flowing through the more permeable zones. The total volume of water that then flows through the system is well in excess of the desired number of pore volumes. Assuming, for example, that for the system of Table 1, two pore volumes of clean water must pass through each layer in order to remove the contaminants, the volume of pore water per unit width of system that must flow through the top layer of Table 1 is $2 \times 2 \times 0.3 \times 1,000 =$ 1,200 m³. The volumes for the other layers are calculated similarly (Table 2, first column). Assuming that the flow rates in the four layers are the same as in Table 1 (column 10), the number of days for two pore volumes to move through each layer is calculated in column 3 of Table 2. As can be expected, the least permeable layer requires the longest time for two pore volumes to move through it, i.e., 30,000 days. Thus, the entire flow through all four layers must be maintained for 30,000 days. Since the flow rate through all four layers is 1.75 m³/day, $30,000 \times 1.75$ or 52,500 m³ must move through the aquifer before the least permeable layer is sufficiently cleaned up. This corresponds to 52,500/5,600 = 9.4 pore volumes, which is almost five times as much as the two required to remove the contaminants. While two pore volumes passed through the least

permeable layer, 20 pore volumes passed through the most permeable layer! Preferential flow and macrodispersion thus can cause the volume of water that must flow through an aquifer for restoring a contaminated zone to be much higher than originally estimated.

Conclusions

The equation for the retardation factor can be derived with a simple mass-balance approach, which clearly shows the roles of water content and porosity. The porosity normally shown in the equation is correct only for full matrix flow in saturated porous media. In all other situations, the porosity should be replaced by the effective volumetric water content. This is the content of the water that is actually moving and is dominating the chemical transport process. Application of the retardation equation to preferential flow or "fingering" in the vadose zone shows that the rate of downward movement of chemicals is inversely proportional to the fingering ratio (total cross-sectional area of fingers per unit horizontal area). Mobile and immobile fractions of pore water may occur in saturated and unsaturated porous media, and they should be taken into account when dealing with underground transport of chemicals.

In aquifers, macropreferential flow occurs when the aquifer consists of various layers or zones with different hydraulic conductivity, thickness, texture, porosity, retardation factor, and other properties affecting the movement of water and chemicals. This leads to macrodispersion where convective transport of chemicals and breakthrough curves are dominated by "preferential" flow through the most permeable and least sorbing materials. Resulting breakthrough curves then tend to be more parabolic than sigmoid, and evaluating "the" dispersion coefficient for the whole system with conventional approaches is futile. Breakthrough curves for layered systems with different hydraulic conductivities, porosities, retardation coefficients, etc., for each layer can be estimated rather simply by assuming a piston flow in each layer, as illustrated with a numerical example. This produces a step breakthrough curve, through which a smooth curve can be drawn. The resulting curve tends to be parabolic rather than sigmoid and, when determined in the field, can be used to estimate the average retardation factor of the more permeable formations of the aquifer. Preferential flow in vadose zones and aquifers also can cause the volume of clean water that must be passed through the system to

Table 2. Calculation of Time Required for Two Pore Volumes to Move Through Each Layer Per Unit Width of System in Table 1

Two pore volumes, m ³	Flow rate q in each layer, m ³ /day	Time for two pore volumes, days
1,200	0.4	3,000
5,000	1	5,000
2,000	0.25	8,000
3,000	0.1	30,000
11,200	1.75	

reduce contaminant concentrations to acceptable levels to be much higher than the number of pore volumes theoretically sufficient to clean up each zone or layer.

References

- Amoozegar-Fard, A., D. R. Nielsen, and A. W. Warrick. 1982. Soil solute concentration distributions for spatially varying pore water velocities and apparent diffusion coefficients. Soil Sci. Soc. Amer. J. v. 46, pp. 3-9.
- Baetslé, L. H. 1967. Computational methods for the prediction of underground movement of radionuclides. J. Nuclear Safety. v. 8, no. 6, pp. 576-588.
- Baetslé, L. H. 1969. Migration of radionuclides in porous media. Progress in Nuclear Energy, Series XII, Health Physics, ed. A.M.F. Duhamel. Pergamon Press, Elmsford, NY. pp. 707-730.
- Bear, J. and A. Verruijt. 1987. Modeling Groundwater Flow and Pollution. D. Reidel Publishing Co., Dordrecht, The Netherlands. 414 pp.
- Beven, K. and P. Germann. 1982. Macropores and water flow in soils. Water Resources Res. v. 18, no. 5, pp. 1311-1325.
- Bouwer, H. 1978. Groundwater Hydrology. McGraw-Hill, New York, NY. 480 pp.
- Bouwer, H. and R. C. Rice. 1984. Hydraulic properties of stony vadose zones. Ground Water. v. 22, pp. 696-705.
- Bowman, R. S., H. Bouwer, and R. C. Rice. 1987. The role of preferential flow phenomena in unsaturated transport. Proc. ASCE Specialty Conf. in Environ. Engr., Orlando, FL. pp. 477-482.
- Bowman, R. S. and R. C. Rice. 1986a. Transport of conservative tracers in the field under intermittent flood irrigation. Water Resources Res. v. 22, no. 11, pp. 1531-1536.
- Bowman, R. S. and R. C. Rice. 1986b. Accelerated herbicide leaching resulting from preferential flow phenomena and its implications for ground water contamination. In: Proc. NWWA Conf. Focus on Southwestern Ground Water Issues, Scottsdale, AZ. pp. 413-425.
 Brusseau, M. L. and P.S.C. Rao. 1989. Sorption nonideality
- Brusseau, M. L. and P.S.C. Rao. 1989. Sorption nonideality during organic contaminant transport in porous media. In: CRC Critical Reviews in Environmental Control. v. 19, no. 1, pp. 33-99. CRC Press, Inc.
- Dao, T. H., T. L. Lavy, and R. C. Sorensen. 1979. Atrazine degradation and residue distribution in soil. Soil Sci. Soc. Amer. J. v. 43, pp. 1129-1134.
- Freeze, R. A. and J. A. Cherry. 1979. Groundwater. Prentice-Hall, Englewood Cliffs, NJ. 604 pp.
- Germann, P. F. and K. Beven. 1985. Kinematic wave approximation to infiltration into soils with sorbing macropores. Water Resources Res. v. 21, no. 7, pp. 990-996.
- Germann, P. F. (ed.). 1988. Rapid and far-reaching hydrologic processes in the vadose zone (15 papers). J. Contaminant Hydrology. v. 3, pp. 115-380.
- Glass, R. J., T. S. Steenhuis, and J.-Y. Parlange. 1988. Wetting front instability as a rapid and far-reaching hydrologic process in the vadose zone. J. of Contaminant Hydrology. v. 3, pp. 207-226.
- Hagerman, J. R., N. B. Pickering, W. F. Ritter, and T. S. Steenhuis. 1989. In situ measurement of preferential flow. In: Proc. ASCE Nat. Water Conf., New York. pp. 117-126.
- Higgins, G. H. 1959. Evaluation of the groundwater contamination hazard from underground nuclear explosives. J. Geophys. Res. v. 64, pp. 1509-1519.
- Jaynes, D. B., R. S. Bowman, and R. C. Rice. 1988. Transport of a conservative tracer in the field under continuous flood irrigation. Soil Sci. Soc. of Amer. J. v. 52, no. 3, pp. 618-624.
- Kahn, A. U. and W. A. Jury. 1990. A laboratory study of the dispersion scale effect in column outflow experiments. J. Contaminant Hydrology. v. 5, pp. 119-131.

- Kanchanasut, P., D. R. Scotter, and R. W. Tillman. 1978. Preferential solute movement through larger soil voids. II. Experiments with saturated soil. Aust. J. Soil Res. v. 16, pp. 269-276.
- Kirkham, D. and W. L. Powers. 1972. Advanced Soil Physics. Wiley Interscience, New York, NY. 534 pp.
- McCarty, P. L., M. Reinhard, and B. E. Rittmann. 1981. Trace organics in groundwater. Env. Sci. and Technol. v. 15, pp. 40-51.
- Rice, R. C., R. S. Bowman, and D. B. Jaynes. 1986. Percolation of water below an irrigated field. Soil Sci. Soc. of Amer. J. v. 50, no. 4, pp. 855-859.
- Roberts, P. V., P. L. McCarty, M. Reinhard, and J. Schreiner. 1980. Organic contaminant behavior during groundwater recharge. J. Water Poll. Contr. Fed. v. 52, pp. 161-172.
- Roberts, P. V., M. Reinhard, and A. J. Valocchi. 1982. Movement of organic contaminants in groundwater: Implications for water supply. J. Am. Water Works Assoc. Aug., pp. 408-413.
- Roberts, P. V., G. D. Hopkins, D. M. Mackay, and L. Semprini. 1990. A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 1, Methodology and field site characterization. Ground Water. v. 28, pp. 591-604.
- Samani, Z., A. Cheraghi, and L. Willardson. 1989. Water movement in horizontally layered soils. J. Irrig. and Drain. Engr. v. 115, pp. 449-456.
- Scotter, D. R. 1978. Preferential solute movement through larger soil voids. I. Some computations using simple theory. Aust. J. Soil Res. v. 16, pp. 257-267.
- Thomas, G. W. and R. E. Phillips. 1979. Consequences of water movement in macropores. J. Environ. Qual. v. 8, pp. 149-152.
- Topp, G. C. 1969. Soil-water hysteresis measured in a sandy loam and compared with the hysteretic domain model. In: Proc. Soil Sci. Soc. Amer. v. 33, pp. 645-651.
- Tyler, D. D. and G. W. Thomas. 1977. Lysimeter measurements of nitrate and chloride losses from soil under conventional and no-tillage corn. J. Environ. Qual. v. 6, pp. 63-66.
- van Genuchten, M. T. and P. J. Wierenga. 1986. Solute dispersion coefficients and retardation factors. In: Methods of Soil Analysis, Part I, Physical and Mineralogical Methods, Agronomy Monograph No. 9 (2nd ed.), ed. A. Klute. Amer. Soc. of Agron., Madison, WI. pp. 1025-1054.
- Vermeulen, T. and N. K. Hiester. 1952. Ion exchange chromatography of trace elements. Ind. Eng. Chem. v. 44, pp. 636-651.
- White, R. E. 1985a. The analysis of solute breakthrough curves to predict water redistribution during unsteady flow through undisturbed structured clay soil. J. Hydrol. v. 79, pp. 21-35.
- White, R. E. 1985b. A model for nitrate leaching in undisturbed structured clay soil during unsteady flow. J. Hydrol. v. 79, pp. 37-51.

* * * *

Herman Bouwer received B.S. and M.S. degrees in 1949 and 1952 in drainage, reclamation, and irrigation from the National Agricultural University at Wageningen, The Netherlands, and a Ph.D. degree in 1955 in Soil and Water Management from Cornell University, New York. He was associated with the Agricultural Engineering Department of Auburn University, Alabama, from 1955 to 1959, before joining the U.S. Water Conservation Laboratory, Agricultural Research Service, U.S. Department of Agriculture (4331 E. Broadway, Phoenix, Arizona 85040) where he became Director in 1972. In 1970, he also was appointed adjunct professor at Arizona State University in Tempe where he taught ground-water hydrology in the Geology and Civil Engineering Departments. He is also an adjunct professor at the University of Arizona in Tucson.

Memo

Date:	8 August 2012
To:	Curtis Moss
From:	Joe Harrigan, Harvinder Singh and Crispin Wanyoike

Subject: Data Package, Groundwater Flow Model Sensitivity Analysis and Validation, Operable Unit-2B, Alameda Point, Alameda, California

1. Introduction

Groundwater flow and transport modeling was conducted as part of the feasibility study (FS) for groundwater at Operable Unit-2B (OU-2B), Alameda Point, Alameda, California. The modeling methodology and results were documented in the Final OU-2B FS Report (OTIE 2011). As part of review of the Draft OU-2B FS Addendum (OTIE 2012), the United States Environmental Protection Agency (U.S. EPA) requested the Navy to perform sensitivity analysis and validation of the flow model. A brief summary of conclusions of the sensitivity analysis and validation for the OU-2B flow model is presented below, and the detailed methodology and results are presented in Attachment A.

2. Conclusions

2.1 FLOW MODEL SENSITIVITY ANALYSIS

A sensitivity analysis was conducted for the OU-2B flow model for hydraulic conductivity (K) zones, the three recharge zones, the four Constant Head (CH) zones, and the twenty-eight General Head Boundary (GHB) zones. The major conclusions include:

- More than half of the K-zones for the entire model domain and within OU-2B area fall into the low sensitivity category with less than one-third of the horizontal hydraulic conductivity (K_h) zones spread across the high to very high sensitivity categories (see Figure 1). Most of the vertical hydraulic conductivity (K_v) zones fall into the low sensitivity category (see Figure 2). This indicates that the model K-zones are more sensitive horizontally than it is vertically.
- U.S.EPA has previously provided comments regarding the use of 80 feet/day K_h zones in the groundwater model. Based on the sensitivity analysis, the two 80 feet/day K_h zones in the OU-2B area have low sensitivity so that their K value could be reduced to 8 ft/day (0.1x the current K_h value) with little impact to the calibration and the flow field.
- As expected, any increase or decrease in the recharge values currently used in the model will adversely impact the flow model calibration.
- The majority of the GHB-K zones for the entire model domain and within OU-2B area are in low sensitivity category (see Figure 3). Most of the GHB-Ft zones fall into the low sensitivity category for the whole model and the OU2B area (see Figure 4).

2.2 FLOW MODEL VALIDATION

The groundwater flow model for OU-2B was calibrated using the average water level data from 1991 through 2005 (hereinafter referred to as "Data Set #1" or "Period 1 Data Set"). Data Set #1 contains groundwater level data for 295 wells within and outside the boundary of OU-2B. The flow model validation was performed using a more recent water level data (2006 through 2011) (herinafter referred to as "Data Set #2" or "Period 2 Data Set") for wells located within the boundary of or in the immediate vicinity of OU-2B. Data Set #2 contains groundwater level data for 123 wells.

Consistent with the recommendations of the U.S. EPA, prior to performing the flow model validation, a comparison of water level data collected from 1991 through 2005 (Period 1) with the data collected from 2006 through 2011 (Period 2), was conducted for 41 wells located within and in the immediate vicinity of OU-2B that have groundwater elevation data in both data sets. The results of this comparison are shown on Figure 5.

The vertical bars on Figure 5 depict the ranges of groundwater levels for Periods 1 and 2, and triangular symbols indicate the average groundwater elevation for each period. The bars on Figure 5 indicate that there is a significant overlap between the ranges of water levels for Period 1 and Period 2 Data Sets for OU-2B wells.

Following comparison of Period 1 and Period 2 Data Sets, calibration residuals were calculated for the groundwater model by substituting average water level data based on Period 2 for 41 wells located within OU-2B. These calibration residuals are shown in Table 1 and in general show improved calibration statistics with lower ARM and percentage compared to calibration residuals using just Period 1 data. This demonstrates that the flow model calibration is reasonable.

3. References:

- OTIE 2011. Final Feasibility Study Report for Operable Unit (OU) 2B Installation Restoration Sites 3, 4, 11, and 21, Alameda Point. Alameda, California. December.
- OTIE 2012. Draft Feasibility Study Report Addendum, Operable Unit 2B, Installation Restoration Sites 3, 4, 11, and 21, Alameda Point. Alameda, California. February.
- Tetra Tech (Tetra Tech). 2009. Final Technical Memorandum for Data Gap Sampling at Operable Units 2A and 2B. July 17.

_____. 2011. Final Supplemental Data Gaps Sampling at Operable Units 2A And 2B, Alameda Point, Alameda, California. September 19.

Figures

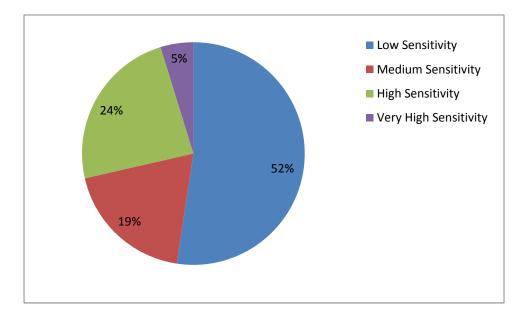


Figure 1: Summary of Sensitivity Analysis Results for Kh Values -- OU-2B Area (All Model Layers)

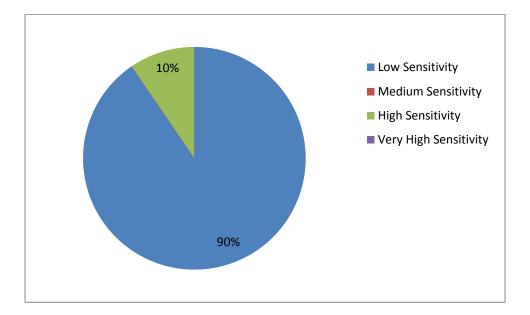
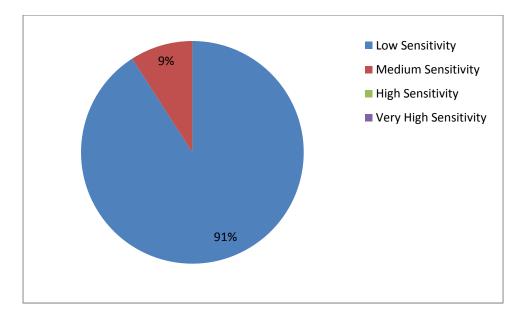
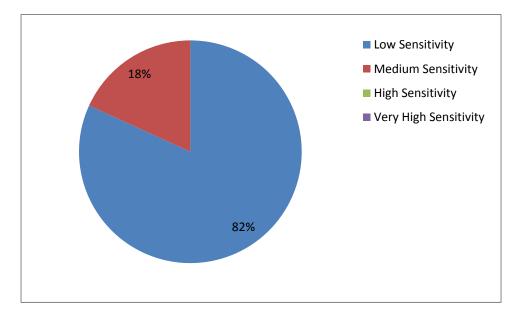
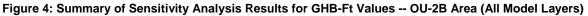


Figure 2: Summary of Sensitivity Analysis Results for Kv Values -- OU-2B Area (All Model Layers)

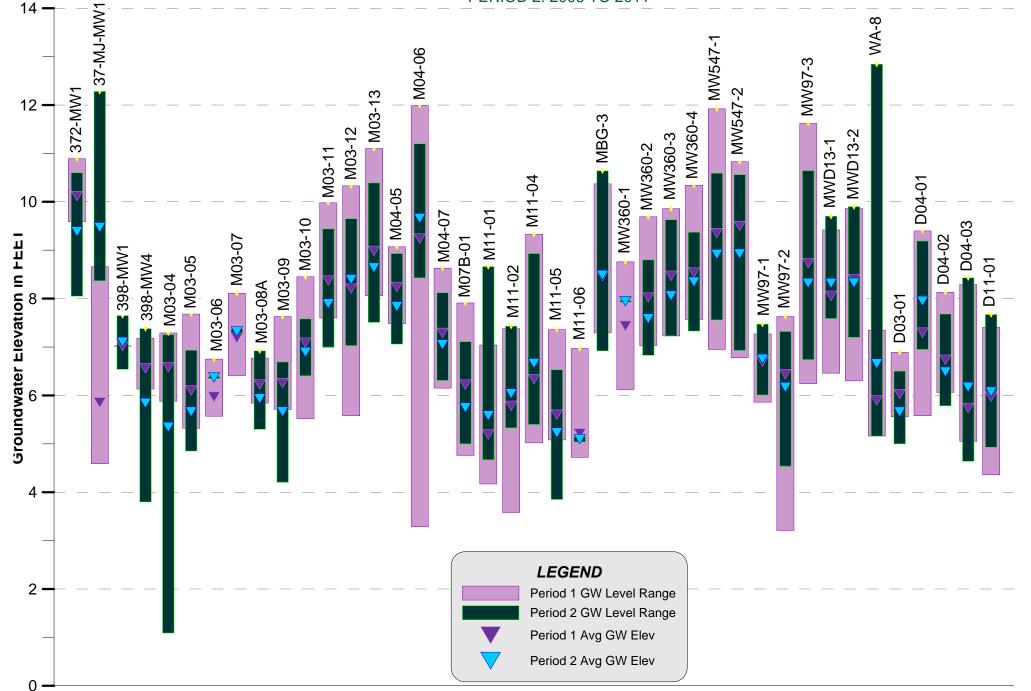

Figure 3: Summary of Sensitivity Analysis Results for GHB-K Values -- OU-2B Area (All Model Layers)

FIGURE 5. ALAMEDA POINT - OU2B GROUNDWATER LEVEL COMPARISON

PERIOD 1: 1991 to 2005 PERIOD 2: 2006 TO 2011

Tables

FS MODEL		Data S	Set 1				FS MODEL	-	Data Set	s1&2			
TABLE 1	WHOLE	MODE	L				TABLE 1	WHOLE N	NODEL				
	RSS	ARM	#Wells	Range	%	RM		RSS	ARM	#Wells	Range	%	RM
All	161.91	0.608	266	7.06	8.61%	-0.018	All	161.91	0.589	266	7.06	8.35%	-0.042
Layer 1	119.06	0.591	198	7.06	8.38%	-0.063	Layer 1	127.28	0.597	198	7.06	8.45%	-0.105
Layer 2	10.40	0.596	22	5.87	10.16%	-0.158	Layer 2	7.17	0.461	22	5.87	7.85%	-0.181
Layer 3	31.81	0.726	41	4.96	14.63%	0.255	Layer 3	26.82	0.653	41	4.96	13.17%	0.316
Layer 4	0.64	0.339	5	1.07	31.73%	0.137	Layer 4	0.64	0.339	5	1.07	31.73%	0.137
TABLE 1	OU2B Are	a					TABLE 1	OU2B Are	a				
	RSS	ARM	#Wells	Range	%	RM		RSS	ARM	#Wells	Range	%	RM
All	35.17	0.548	73	6.01	9.11%	0.010	All	35.64	0.486	73	6.01	8.09%	-0.065
Layer 1	24.02	0.524	53	6.01	8.71%	0.027	Layer 1	32.33	0.544	53	6.01	9.05%	-0.132
Layer 2	3.98	0.533	10	3.06	17.43%	0.072	Layer 2	1.11	0.275	10	3.06	8.99%	0.113
Layer 3	7.18	0.690	10	2.62	26.35%	-0.142	Layer 3	2.20	0.393	10	2.62	14.99%	0.109

Table 1: Calibration Statistics Comparison

Attachment A Flow Model Sensitivity Analysis and Validation

1. Introduction

Groundwater flow and transport modeling was conducted as part of the feasibility study (FS) for groundwater at Operable Unit-2B (OU-2B), Alameda Point, Alameda, California. The modeling methodology and results were documented in the Final OU-2B FS Report (OTIE 2011). As part of review of the Draft OU-2B FS Addendum (OTIE 2012), the United States Environmental Protection Agency (U.S. EPA) requested the Navy to perform sensitivity analysis and validation of the flow model. The following subsections present a summary of methodology and results for the OU-2B flow model sensitivity analysis and flow model validation.

1.1 FLOW MODEL SENSITIVITY ANALYSIS

The sensitivity tests were conducted for each of the 60 hydraulic conductivity zones, the three recharge zones, the four Constant Head (CH) zones, and the 28 General Head Boundary (GHB) zones, and the results are shown in Table 1. The calibration statistic used for reporting the results is the sum of squared residuals (SSR). The SSR for the calibrated flow model is 161 square feet (ft²), and was considered the "base SSR" value for all comparisons. The maximum, minimum, and range between the two statistics were calculated and are listed below the SSR results for each tested parameter (see Table 1). The magnitude of the range of SSR was selected to rate the sensitivity of the flow model parameter as low (0 square feet [ft²] to 10 ft²), moderate (10 ft² to 50 ft²), high (50 ft² to 161 ft²), and very high (greater than 161 ft²). In general, low SSR values indicated that a good calibration could be slightly impacted if particular K_h or K_v values were changed. High SSR values, assumed to be greater than 50 ft², indicate that a particular K-value is sensitive to change. Since the OU-2B area covers approximately 20 percent of the entire flow model domain, notations are made in Table 1 indicating which model parameters occur within OU-2B.

For hydraulic conductivity, the model was run with a single value of either horizontal hydraulic conductivity (K_h) or vertical hydraulic conductivity (K_v) multiplied by a set value (multipliers varying between 0.1 and 10 for both K_h and K_v). These simulations were repeated for each model K_h or K_v zone with all applicable multipliers. The resulting K_h SSR values range between 153.65 ft² and 7,325 ft². The lowest K_h SSR value is 153.65 ft² which is 8.57 ft² (4.7 percent) below the base SSR value. Plots of the K_h SSR results versus the multipliers are shown on Figures 1 through 4. These plots show results for the OU-2B area with low sensitivity K zones on Figure 1, moderate sensitivity K zones on Figure 2, and high sensitivity K zones on Figure 3, and very high sensitivity K zones on Figure 4. In general, the greatest SSR values are associated with the greatest and lowest multipliers.

The K_v SSR values showed a larger range, between 152.11 ft² and 10,714 ft². Plots of the K_v SSR results versus the multipliers are shown on Figures 5 through 7. These plots show results for the OU-2B area with low sensitivity K zones on Figure 5, moderate sensitivity K zones on Figure 6, and high sensitivity K zones on Figure 7. In general, the greatest SSR values are associated with the greatest and lowest multipliers. In several cases there are SSR values that are slightly lower than the base SSR which could indicate an improved model calibration. However, the K_h SSR and the associated K_v SSR needs to be considered together if the 10:1(K_h : K_v) ratio is to be maintained. The SSR for a particular K_h multiplier may be less than the base SSR but the SSR for the K_v value for the same multiplier many times is higher than the corresponding base SSR. The net result is degraded SSR. Another issue to be considered with the lower SSR value is the resulting K value if the multiplier is applied. For instance, as shown on Figure 2, the best SSR value (+1.43 ft²) for K-zone 40 (80 ft/day) is with the 10x multiplier. The resulting K value would be 800 ft/day which is well above the acceptable range of K for the site.

There are two 80 feet/day K zones in the OU-2B area, zones 40 and 41. As can be seen in Table 1, both of these zones have low sensitivity so that their K value could be reduced to 0.1x (8 ft/day) with little impact to the calibration and the flow field. Both of the 80 feet/day K zones are relatively small zones which are surrounded by lower K zones which isolate these high K zones.

Table 2 summarizes the number of K-zones, both K_h and K_v , whose SSR Range values fall into the four sensitivity categories, by model layer and for those zones within or near the OU-2B area. There is a mix of sensitivity with the majority of the K-zones falling into the low sensitivity category. However, nearly half of the K_h zones are spread across the moderate to very high categories. Most of the K_v zones fall into the low sensitivity category. This indicates that the model K-zones are more sensitive horizontally than it is vertically.

The sensitivity test for the three recharge zones across the Alameda Point model domain had their values, in feet/day, multiplied by a set value varying between 0.5 and 1.5, or between 50-percent to 150-percent, and the SSR values are reported in Table 1. Period of record precipitation recorded at the Oakland Museum gauge site is 44 percent to 179 percent of normal precipitation. The 50 percent to 150 percent multiplier used is a reasonable approximation of the range. All three recharge zones had minimum SSRs at either 1x (two zones) or 0.9x (one zone) the current setting. The SSR Range varied between 3.7 ft2 to 1,632 ft2. Recharge zone 2 covers most of the OU-2B area has the minimum SSR at 1x and has the largest SSR range at both 0.5x and 1.5x. The resultant SSR show clear trends of degrading SSR at both multiplier end-points (0.1x and 10x) so any continued decrease or increase in multiplier for precipitation should show continuation of the trends. This indicates that almost any increase or decrease in recharge will adversely impact the flow model calibration.

The sensitivity test for the four CH zones located along the eastern (upgradient) side of the model were run for the head value ranging between -1.0 feet and +1.0 feet of the set value with the SSR values reported as results. The CH zones are oriented north to south, with zone 1 on the north and zone 4 on the south. The SSR Range varied between 0.483 ft² to 2.956 ft², all in the low sensitivity range.

The sensitivity test for the 28 GHB zones located along the northern, western, and southern sides of the model were run for two settings with each GHB, head and conductivity settings. There are 10 GHB zones in layer 1, and six each in layers 2, 3, and 4. In layer 1, zone 12 represents Seaplane Lagoon, and zones 2 to 5 are the GHB zones, positioned in order from north to south, along the eastern edge of Seaplane Lagoon, i.e., the western edge of OU-2B. GHB zone 11, located along the southeast edge of the flow model, is the closest of the other five layer 1 GHB zones to OU-2B area. The GHB zones in lower layers are positioned and labeled similarly as in layer 1; for instance, below layer 1 GHB zone 11 is GHB zone 21 in layer 2, GHB zone 31 in layer 3, and GHB zone 41 in layer 4.

The conductivity values (GHB-K) were multiplied by a set value varying between 0.1 and 10 and the GHB head (GHB-Ft) values were adjusted between -1.0 and +1.0 feet of the set value, with the SSR values reported as results. The median range of historic groundwater levels for the 296 wells at the site is 3.14 feet. The +/-1 feet results in 2 feet of range, or 64% of the range. That is reasonable range for these groundwater levels. The resulting GHB-K SSR range values were between 442.87 square feet (ft²) and 0.003 ft², with two K_h -zones being greater than 200 ft². Plots of the GHB-K SSR results versus the multipliers are shown on Figures 8 and 9. These plots show results for the OU-2B area with low sensitivity K zones in Figure 8 and low and high sensitivity K zones on Figure 9. In general, the greatest SSR values are associated with the greatest and lowest multipliers.

The resulting GHB-Ft SSR range values were between 40.97 and 0.005ft², with the five highest SSR values of the GHB-Ft zones being only of moderate sensitivity. Table 3 summarizes the number of GHB-K and GHB-Ft zones, whose SSR Range values fall into the four categories, by model layer and for those

zones in or near the OU-2B area. The majority of the GHB-K zones fall into the low sensitivity category although approximately a third of the GHB-K zones are spread across the moderate to very high categories. In the OU-2B area, all but one of the GHB-K zones are in the low sensitivity category. Most of the GHB-Ft zones fall into the low sensitivity category for the whole model and the OU-2B area. This indicates that the GHB-K settings in the flow model are more sensitive than the GHB-Ft settings.

1.2 FLOW MODEL VALIDATION EVALUATION

The groundwater flow model for OU-2B was calibrated using the average water level data from 1991 through 2005 (hereinafter referred to as "Data Set #1" or "Period 1 Data Set"). Data Set #1 contains groundwater level data for 295 wells within and outside the boundary of OU-2B. The flow model validation was performed using a more recent water level data (2006 through 2011) (herinafter referred to as "Data Set #2" or "Period 2 Data Set") for wells located within the boundary of or in the immediate vicinity of OU-2B. Data Set #2 contains groundwater level data for 123 wells.

Consistent with the recommendations of the U.S. EPA, prior to performing the flow model validation, a comparison of water level data collected from 1991 through 2005 (Period 1) with the data collected from 2006 through 2011 (Period 2), was conducted for 41 wells located within and in the immediate vicinity of OU-2B that have groundwater elevation data in both data sets. The results of this comparison are shown on Figure 10.

The vertical bars on Figure 1 depict the ranges of groundwater levels for Periods 1 and 2, and triangular symbols indicate the average groundwater elevation for each period. The bars on Figure 1 indicate that there is a significant overlap between the ranges of water levels for Period 1 and Period 2 for OU-2B wells.

The groundwater levels are subject to the known tidal influences and fluctuations in water levels (minimum/maximum) are likely temporal conditions. Therefore, the use of average water levels computed using Period 2 Data Set for validation is appropriate. Following comparison of Period 1 and Period 2 data sets, calibration residuals were calculated for the groundwater model by substituting average water level data based on Period 2 for 41 wells located within OU-2B. These calibration residuals are shown in Table 4 and in general show improved calibration statistics with lower ARM and percentage compared to calibration residuals using just Period 1 data

In addition, as a first step to evaluate the effect of including water level data collected from wells installed after 2004-2005, average water levels were computed for Layers 1, 2, and 3 of the groundwater model based on the Period 2 Data Set. These average values were compared with corresponding averages for Layers 1, 2, and 3 computed for wells within and in the immediate vicinity of OU-2B using Period 1 Data Set. As shown in Table 5, the differences in Layers 1, 2, and 3 average water levels computed based on Period 1 and Period 2 data sets range from 0.29 feet to 1.89 feet.

2. Conclusions

A sensitivity analysis was conducted for the OU-2B flow model for hydraulic conductivity zones, the three recharge zones, the four CH zones, and the 28 GHB zones. In addition, validation of OU-2B model was performed using a more recent water level data (2006 through 2011) for wells located within the boundary of or in the immediate vicinity of OU-2B. The following conculsions may be derived based on the results of the flow model sensitivity analysis and validation:

• More than half of the K-zones in the entire model fall into the low sensitivity category with less than one-third of the K_h zones spread across the high to very high sensitivity categories. Most of

the K_v zones fall into the low sensitivity category. This indicates that the model K-zones are more sensitive horizontally than it is vertically.

- The two 80 feet/day K zones in the OU-2B area have low sensitivity so that their K value could be reduced to 8 ft/day (0.1x the current K value) with little impact to the calibration and the flow field.
- As expected, any increase or decrease in the recharge values currently used in the model will adversely impact the flow model calibration.
- The majority of the GHB-K zones fall into the low sensitivity category although approximately a third of the GHB-K zones are spread across the moderate to very high categories. In the OU-2B area all but one of the GHB-K zones are in the low sensitivity category. Most of the GHB-Ft zones fall into the low sensitivity category for the whole model and the OU-2B area. This indicates that the GHB-K settings in the flow model are more sensitive than the GHB-Ft settings.
- The flow model validation exercise showed that calibration statistics are improved if the most recent groundwater elevation data (2006 through 2011) were used for the wells within or the immediate vicinity of OU-2B. This demonstrates that the flow model calibration is reasonable.

3. References:

OTIE 2011. Final Feasibility Study Report for Operable Unit (OU) 2B Installation Restoration Sites 3, 4, 11, and 21, Alameda Point. Alameda, California. December.

OTIE 2012. Draft Feasibility Study Report Addendum, Operable Unit 2B, Installation Restoration Sites 3, 4, 11, and 21, Alameda Point. Alameda, California. February.

Tetra Tech (Tetra Tech). 2009. Final Technical Memorandum for Data Gap Sampling at Operable Units 2A and 2B. July 17.

_____. 2011. Final Supplemental Data Gaps Sampling at Operable Units 2A And 2B, Alameda Point, Alameda, California. September 19.

Tables

 TABLE 1

 ALAMEDA POINT - OU2B: SENSITIVITY ANALYSIS RESULTS SUMMARY

	Horizontal C	Conductivity	v Zones								ALAME	DA POI	NT - OU2B	: SENSIT	IVITY AN	IALYSIS	RESULTS	SUMMAR	Y											
Layer	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1, 2	1, 3	2	2	2	2	2	2	2	2	2	3	3
K: Ft/D	0.10	0.10	8.00	8.00	10.00	5.00	7.50	10.00	0.13	0.13	0.10	1.00	0.10	0.02	0.10	0.05	0.10	10,000.0	0.25	0.24	2.00	0.11	0.10	1.00	1.00	0.25	2.00	1.00	12.46	14.00
Multiplier	Kx2	Kx3	Kx4	Kx5	Kx6	Kx7	Kx8	Kx9	Kx23	Kx24		Kx26		Kx43		Kx45	Kx47	Kx19	Kx1	Kx10	Kx11	Kx12	Kx20	Kx21	Kx30	Kx31		Kx48		Kx14
0.1 0.3	165.84 164.37	164.36 163.51	194.35 178.30	166.77 164.70	161.24 161.21	165.00 163.50	161.03 161.10	161.16 161.18	161.27 161.27	161.76 161.53	161.92 161.57	162.30 162.10	161.50 161.40	187.48 164.36	159.79 160.19	158.50 159.28	162.41 161.92	162.47 161.49	162.50 161.99	162.98 162.27	163.91 163.08	161.61 161.51	161.31 161.29	161.24 161.24	161.23 161.23	161.46 161.40	161.52 161.45	164.85 162.44	1,022.56 345.11	325.43 203.58
0.5	163.23	162.76	170.30	163.35	161.20	162.62	161.14	161.20	161.26	161.40	161.41	161.85		161.12	160.59	159.94	161.62	161.33	161.68	161.82	162.43	161.42	161.27	161.23	161.23	161.35	161.38	161.71	223.12	178.04
0.7	162.31	162.10	165.47	162.35	161.20	161.97	161.18	161.21	161.24	161.31	161.32	161.59	161.28	160.74	160.89	160.51	161.42	161.26	161.46	161.52	161.89	161.34	161.25	161.23	161.22	161.30	161.31	161.40	181.72	167.84
0.85	161.73 161.22	161.64 161.22	163.02 161.22	161.74 161.22	161.21 161.22	161.57 161.22	161.20 161.22	161.22 161.22	161.23 161.22	161.26 161.22	161.26 161.22	161.40 161.22	161.25 161.22	160.92 161.22	161.07 161.22	160.88 161.22	161.31 161.22	161.24 161.22	161.33 161.22	161.35 161.22	161.54 161.22	161.28 161.22	161.24 161.22	161.23 161.22	161.22 161.22	161.26 161.22	161.27 161.22	161.28 161.22	168.05 161.22	163.77 161.22
2	159.02	159.05	157.81	159.03	161.40	159.69	161.31	161.25	161.15	161.09	161.05	160.27	161.07	163.26	161.79	162.87	161.04	161.20	160.76	160.73	160.00	160.88	161.13	161.20	161.22	161.01	160.97	161.35	166.91	157.60
4	157.35	156.55	166.58	157.45	162.00	158.25	161.41	161.27	161.04	161.03	160.87	159.28	160.86	165.29	162.19	164.62	161.38	161.19	160.31	160.30	161.08	160.35	160.96	161.16	161.23	160.65	160.57	162.04	208.83	163.22
6	157.00	155.15	180.92	157.31	162.71	157.57	161.47	161.28	160.97	161.03	160.75	159.00	160.70	166.21	162.35	165.56	161.92	437.97	160.09	160.04	165.57	159.97	160.81	161.13	161.26	160.37	160.26	162.56	242.98	169.84
8 10	157.16 157.57	154.26 153.65	196.46 211.89	157.77 158.55	163.45 164.17	157.18 156.95	161.50 161.53	161.28 161.29	160.92 160.90	161.06 161.11	160.66 160.59	159.12 159.51	160.58 160.48	166.72 167.06	162.43 162.49	166.15 166.56	162.47 162.99	468.63 7,486.84	159.98 159.94	159.91 159.88	172.50 181.24	159.68 159.45	160.68 160.56	161.10 161.07	161.30 161.34	160.12 159.92	160.01 159.81	162.94 163.22	269.88 291.84	175.69 180.71
10	157.57	100.00	211.05	150.55	104.17	130.55	101.55	101.25	100.50	101.11	100.00	135.51	100.40	107.00	102.45	100.50	102.55	7,400.04	155.54	100.00	101.24	100.40	100.50	101.07	101.54	135.52	135.01	105.22	201.04	100.71
Max:	165.84	164.36	211.89	166.77	164.17	165.00	161.53	161.29	161.27	161.76	161.92	162.30	161.50	187.48	162.49	166.56	162.99	7,486.84	162.50	162.98	181.24	161.61	161.31	161.24	161.34	161.46	161.52		1,022.56	325.43
Min: Range:	157.00 8.839	153.65 10.713	157.81 54.08	157.31 9.467	161.20 2.971	156.95 8.048	161.03 0.500	161.16 0.131	160.90 0.369	161.03 0.725	160.59 1.324	159.00 3.303	160.48 1.019	160.74 26.745	159.79 2.695	158.50 8.061	161.04 1.950	161.19 7,325.7	159.94 2.565	159.88 3.102	160.00 21.237	159.45 2.153	160.56 0.749	161.07 0.176	161.22 0.114	159.92 1.542	159.81 1.717	161.22 3.633	161.22 861.3	157.60 167.8
Notes	0.039	10.715	OU2B	9.407	OU2B	8.048	0.500	0.131	0.309	OU2B		OU2B		OU2B	OU2B	8.001		en water	2.303	3.102	OU2B	2.155	0.745	0.170	OU2B	1.342	OU2B	3.033	801.5	107.8
-	Vertical Con	nductivity Z	ones																											
Layer	1	1	1 0.80	1 0.80	1 1.00	1 0.50	1 0.75	1 1.00	1 0.01	1 0.01	1 0.01	1 0.10	1 0.01	1 0.00	1 0.01	1 0.01	1 0.01	1, 2	1, 3	2 0.02	2 0.20	2 0.01	2 0.01	2 0.10	2 0.10	2 0.03	2 0.20	2 0.10	3 12.46	3 1.40
K: Ft/D Multiplier	0.01 Kz2	0.01 Kz3	0.80 Kz4	Kz5	1.00 Kz6	0.50 Kz7	0.75 Kz8	1.00 Kz9	Kz23	Kz24	Kz25	Kz26	Kz34	0.00 Kz43	0.01 Kz44	0.01 Kz45	Kz47	10,000 Kz19	0.03 Kz1	0.02 Kz10	0.20 Kz11	0.01 Kz12	0.01 Kz20	0.10 Kz21	0.10 Kz30	0.03 Kz31		0.10 Kz48		1.40 Kz14
0.1	2825.99	10865.79	159.21	160.97	161.00	162.98	161.20	161.22	1055.40	244.42	631.28	313.47	1612.02	160.80	160.80	156.43	253.01	161.22	758.68	2079.95	236.33			161.368				164.032	161.76	162.28
0.3	504.58	1237.04	160.50	161.08	161.15	161.68	161.21	161.22	261.15	176.93	224.91	176.59	306.60	160.87	160.91	156.95	177.10	161.22	208.91	347.08	169.08				161.079	290.935		161.850	161.37	161.48
0.5 0.7	234.78 178.68	363.46 211.90	160.90 161.08	161.15 161.19	161.19 161.21	161.42 161.31	161.22 161.22	161.22 161.22	174.74 161.62	164.49 161.73	172.82 163.04	165.91 162.89	192.71 168.12	160.95 161.05	161.01 161.10	158.28 159.61	165.93 162.78	161.22 161.22	170.65 163.33	199.78 168.94	163.41 161.92				161.142 161.184	198.287 173.359		161.482 161.331	161.28 161.25	161.33 161.27
0.85	166.02	176.60	161.16	161.21	161.22	161.26	161.22	161.22	160.43	161.25	161.39	161.85	163.03	161.13	161.16	160.48	161.78	161.22	161.75	162.65	161.46				161.205	165.508		161.267	161.23	161.24
1	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22			161.222	161.222	161.222		161.222	161.22	161.22
2	164.15 173.81	152.11 163.31	161.39 161.48	161.26 161.28	161.24 161.25	161.12 161.08	161.22 161.22	161.22 161.22	170.52 178.91	162.64 164.17	165.24 169.86	159.88 159.44	162.85 166.87	161.87 163.11	161.53 161.90	164.08 166.00	160.25 160.10	161.22 161.22	162.26	172.39 188.06	160.98 161.29			161.210 161.202	161.286 161.329	154.801 154.979		161.098	161.19 161.18	161.17 161.14
6	175.81	169.00	161.48	161.28	161.25	161.08	161.22	161.22	178.91	164.17	171.80	159.44	168.62	163.11	161.90	166.71	160.10 160.09	161.22	164.14 164.96	188.00	161.29				161.329	155.580		161.037 161.017	161.18	161.14
8	180.47	172.18	161.52	161.29	161.25	161.05	161.22	161.22	184.00	165.08	172.84	159.26	169.56	164.83	162.24	167.08	160.10	161.22	165.41	199.03	161.76				161.355	155.987		161.008	161.17	161.13
10	181.94	174.19	161.53	161.29	161.25	161.05	161.22	161.22	185.09	165.27	173.49	159.23	170.15	165.40	162.33	167.31	160.10	161.22	165.69	201.51	161.92	178.41	178.118	161.198	161.361	156.267	161.559	161.002	161.17	161.13
Max:	2,825.99	10,865.79	161.53	161.29	161.25	162.98	161.23	161.22	1,055.40	244.42	631.28	313.47	1,612.02	165.40	162.33	167.31	253.01	161.22	758.68	2,079.95	236.33	1,657.43	477.76	161.37		1,200.44	170.71	164.03	161.76	162.28
Min:	161.22 2.664.8	152.11 10,713.7	159.21	160.97 0.320	161.00	161.05	161.20	161.22	160.43	161.22	161.22 470.1	159.23	161.22 1,450.8	160.80	160.80	156.43	160.09	161.22	161.22	161.22	160.98	161.22	161.22	161.20	161.03	154.80	161.19	161.00	161.17	161.13 1.155
Range: Notes	2,004.8	10,713.7	2.323 OU2B	0.320	0.254 OU2B	1.930	0.027	0.007	895.0	83.20 OU2B		154.2 OU2B		4.603 OU2B	1.522 OU2B	10.873	92.92 op	0.004 en water	597.5	1,918.7	75.35 OU2B	1,496.2	316.5	0.170	0.335 OU2B	1,045.6	9.519 OU2B	3.029	0.592	1.155
																	•		•											
Laver	Horizontal C	Conductivity 3	y Zones	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4
Layer K: Ft/D	3		,	3 5.00	3 44.52	3 28.00	3 25.00	3 3.04	3 37.84	3 14.00	3 5.00	3 80.0	3 80.0	3 80.0	3 0.10	3 14.00		3 6.08	3 6.08	3 44.52		3 12.46	3 12.46	3 12.46	3 12.46	4 0.10	4 0.50	4	4 2.50	4
K: Ft/D Multiplier	3 44.52 Kx15	3 80.0 Kx16	3 6.08 Kx17	5.00 Kx22	44.52 Kx27	Kx28	25.00 Kx29	3.04 Kx36	37.84 Kx37	14.00 Kx38	5.00 Kx39	80.0 Kx40	80.0 Kx41	80.0 Kx42	0.10 Kx46	14.00 Kx51	3 80.0 Kx52	6.08 Kx53	6.08 Kx54	Kx55	3 24.96 Kx56	12.46 Kx57	12.46 Kx58	12.46 Kx59	12.46 Kx60	0.10 Kx18	0.50 Kx32	0.10 Kx33	2.50 Kx49	0.25 Kx50
K: Ft/D Multiplier 0.1	3 44.52 Kx15 360.72	3 80.0 Kx16 875.24	3 6.08 Kx17 395.64	5.00 Kx22 171.07	44.52 Kx27 1,374.21	Kx28 179.79	25.00 Kx29 234.96	3.04 Kx36 162.67	37.84 Kx37 439.99	14.00 Kx38 171.75	5.00 Kx39 161.31	80.0 Kx40 166.17	80.0 Kx41 161.32	80.0 Kx42 226.11	0.10 Kx46 159.76	14.00 Kx51 163.14	3 80.0 Kx52 351.84	6.08 Kx53 171.07	6.08 Kx54 183.87	Kx55 245.30	3 24.96 Kx56 343.96	12.46 Kx57 218.07	12.46 Kx58 288.07	12.46 Kx59 208.09	12.46 Kx60 211.84	0.10 Kx18 161.85	0.50 Kx32 161.21	0.10 Kx33 161.96	2.50 Kx49 161.29	0.25 Kx50 160.89
K: Ft/D Multiplier	3 44.52 Kx15	3 80.0 Kx16	3 6.08 Kx17	5.00 Kx22	44.52 Kx27	Kx28	25.00 Kx29	3.04 Kx36	37.84 Kx37	14.00 Kx38	5.00 Kx39	80.0 Kx40	80.0 Kx41	80.0 Kx42	0.10 Kx46	14.00 Kx51	3 80.0 Kx52	6.08 Kx53	6.08 Kx54	Kx55	3 24.96 Kx56	12.46 Kx57	12.46 Kx58	12.46 Kx59	12.46 Kx60	0.10 Kx18	0.50 Kx32	0.10 Kx33	2.50 Kx49	0.25 Kx50
K: Ft/D Multiplier 0.1 0.3 0.5 0.7	3 44.52 Kx15 360.72 213.84 180.51 167.96	3 80.0 Kx16 875.24 377.85 233.06 180.65	3 6.08 Kx17 395.64 217.74 183.14 169.74	5.00 Kx22 171.07 163.55 162.23 161.65	44.52 Kx27 1,374.21 439.83 250.51 187.26	Kx28 179.79 165.69 163.08 161.96	25.00 Kx29 234.96 179.25 167.86 163.56	3.04 Kx36 162.67 161.95 161.63 161.43	37.84 Kx37 439.99 261.86 203.08 176.77	14.00 Kx38 171.75 166.70 164.19 162.61	5.00 Kx39 161.31 161.27 161.25 161.24	80.0 Kx40 166.17 163.61 162.45 161.80	80.0 Kx41 161.32 161.27 161.25 161.23	80.0 Kx42 226.11 181.00 167.57 162.78	0.10 Kx46 159.76 159.99 160.36 160.73	14.00 Kx51 163.14 161.63 161.25 161.15	3 80.0 Kx52 351.84 226.15 187.69 171.07	6.08 Kx53 171.07 163.43 162.07 161.56	6.08 Kx54 183.87 168.58 164.72 162.81	Kx55 245.30 189.95 172.76 165.46	3 24.96 Kx56 343.96 241.10 193.93 171.38	12.46 Kx57 218.07 191.59 176.45 167.67	12.46 Kx58 288.07 220.08 188.49 172.08	12.46 Kx59 208.09 167.01 161.69 160.49	12.46 Kx60 211.84 169.13 163.47 161.92	0.10 Kx18 161.85 161.72 161.58 161.43	0.50 Kx32 161.21 161.21 161.22 161.22	0.10 Kx33 161.96 161.78 161.61 161.45	2.50 Kx49 161.29 161.27 161.26 161.24	0.25 Kx50 160.89 160.98 161.05 161.13
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47	5.00 Kx22 171.07 163.55 162.23 161.65 161.39	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46	Kx28 179.79 165.69 163.08 161.96 161.50	25.00 Kx29 234.96 179.25 167.86 163.56 162.03	3.04 Kx36 162.67 161.95 161.63 161.43 161.32	37.84 Kx37 439.99 261.86 203.08 176.77 166.67	14.00 Kx38 171.75 166.70 164.19 162.61 161.80	5.00 Kx39 161.31 161.27 161.25 161.24 161.23	80.0 Kx40 166.17 163.61 162.45 161.80 161.47	80.0 Kx41 161.32 161.27 161.25 161.23 161.23	80.0 Kx42 226.11 181.00 167.57 162.78 161.50	0.10 Kx46 159.76 159.99 160.36 160.73 160.99	14.00 Kx51 163.14 161.63 161.25 161.15 161.17	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74	6.08 Kx53 171.07 163.43 162.07 161.56 161.35	6.08 Kx54 183.87 168.58 164.72 162.81 161.89	Kx55 245.30 189.95 172.76 165.46 162.72	3 24.96 Kx56 343.96 241.10 193.93 171.38 163.73	12.46 Kx57 218.07 191.59 176.45 167.67 163.69	12.46 Kx58 288.07 220.08 188.49 172.08 165.19	12.46 Kx59 208.09 167.01 161.69 160.49 160.61	12.46 Kx60 211.84 169.13 163.47 161.92 161.46	0.10 Kx18 161.85 161.72 161.58 161.43 161.33	0.50 Kx32 161.21 161.21 161.22 161.22 161.22	0.10 Kx33 161.96 161.78 161.61 161.45 161.34	2.50 Kx49 161.29 161.27 161.26 161.24 161.23	0.25 Kx50 160.89 160.98 161.05 161.13 161.17
K: Ft/D Multiplier 0.1 0.3 0.5 0.7	3 44.52 Kx15 360.72 213.84 180.51 167.96	3 80.0 Kx16 875.24 377.85 233.06 180.65	3 6.08 Kx17 395.64 217.74 183.14 169.74	5.00 Kx22 171.07 163.55 162.23 161.65	44.52 Kx27 1,374.21 439.83 250.51 187.26	Kx28 179.79 165.69 163.08 161.96	25.00 Kx29 234.96 179.25 167.86 163.56	3.04 Kx36 162.67 161.95 161.63 161.43	37.84 Kx37 439.99 261.86 203.08 176.77	14.00 Kx38 171.75 166.70 164.19 162.61	5.00 Kx39 161.31 161.27 161.25 161.24 161.23	80.0 Kx40 166.17 163.61 162.45 161.80	80.0 Kx41 161.32 161.27 161.25 161.23 161.23	80.0 Kx42 226.11 181.00 167.57 162.78	0.10 Kx46 159.76 159.99 160.36 160.73	14.00 Kx51 163.14 161.63 161.25 161.15	3 80.0 Kx52 351.84 226.15 187.69 171.07	6.08 Kx53 171.07 163.43 162.07 161.56	6.08 Kx54 183.87 168.58 164.72 162.81	Kx55 245.30 189.95 172.76 165.46	3 24.96 Kx56 343.96 241.10 193.93 171.38	12.46 Kx57 218.07 191.59 176.45 167.67	12.46 Kx58 288.07 220.08 188.49 172.08	12.46 Kx59 208.09 167.01 161.69 160.49	12.46 Kx60 211.84 169.13 163.47 161.92	0.10 Kx18 161.85 161.72 161.58 161.43	0.50 Kx32 161.21 161.21 161.22 161.22	0.10 Kx33 161.96 161.78 161.61 161.45 161.34	2.50 Kx49 161.29 161.27 161.26 161.24 161.23	0.25 Kx50 160.89 160.98 161.05 161.13
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.22 160.91 161.24	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46	Kx28 179.79 165.69 163.08 161.96 161.50 161.22 161.26 163.80	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.22 161.54 165.67	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 161.22 160.82 160.46	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61	14.00 Kx38 171.75 166.70 164.19 162.61 161.80 161.22 161.23 171.42	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17	80.0 Kx40 166.17 163.61 162.45 161.80 161.47 161.22 160.45 160.03	80.0 Kx41 161.32 161.27 161.23 161.23 161.23 161.23 161.23 161.20 161.21	80.0 Kx42 226.11 181.00 167.57 162.78 161.50 161.22 166.26 176.36	0.10 Kx46 159.76 159.99 160.36 160.73 160.99 161.22 162.27 163.13	14.00 Kx51 163.14 161.63 161.25 161.17 161.22 161.92 163.44	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10	6.08 Kx54 183.87 168.58 164.72 162.81 161.89 161.22 160.12 164.93	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70	3 24.96 Kx56 343.96 241.10 193.93 171.38 163.73 161.22 201.56 333.87	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 161.22 162.82 187.65	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40	12.46 Kx59 208.09 167.01 161.69 160.49 160.61 161.22 169.68 187.46	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.01 161.45	0.10 Kx18 161.85 161.72 161.58 161.43 161.33 161.22 160.65 160.10	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.23 161.23 161.21	0.10 Kx33 161.96 161.78 161.61 161.45 161.34 161.22 160.57 159.64	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05	0.25 Kx50 160.89 161.05 161.13 161.17 161.22 161.47 161.73
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79	3 6.08 Kx17 395.64 217.74 183.14 169.74 161.22 157.16 167.26 179.77	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.22 160.91 161.24 161.65	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79	Kx28 179.79 165.69 163.08 161.96 161.50 161.22 161.26 163.80 166.62	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.22 161.54 165.67 168.79	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 161.22 160.82 160.82 160.46 160.28	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44	14.00 Kx38 171.75 166.70 164.19 162.61 161.80 161.23 171.42 187.38	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16	80.0 Kx40 166.17 163.61 162.45 161.80 161.47 160.45 160.03 159.90	80.0 Kx41 161.32 161.27 161.23 161.23 161.23 161.23 161.23 161.24 161.25 161.23 161.24 161.25	80.0 Kx42 226.11 181.00 167.57 162.78 161.50 161.22 166.26 176.36 182.29	0.10 Kx46 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49	14.00 Kx51 163.14 161.63 161.25 161.17 161.22 161.92 163.44 164.74	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34	6.08 Kx54 183.87 168.58 164.72 162.81 161.89 161.22 160.12 164.93 172.70	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65	3 X4.96 Kx56 343.96 241.10 193.93 171.38 163.73 161.22 201.56 333.87 445.17	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 161.22 162.82 187.65 212.14	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06	12.46 Kx59 208.09 167.01 161.69 160.49 160.61 161.22 169.68 187.46 200.82	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08	0.10 K×18 161.85 161.72 161.58 161.43 161.33 161.22 160.65 160.10 160.15	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.23 161.23 161.21 161.17	0.10 Kx33 161.96 161.78 161.61 161.45 161.34 161.22 160.57 159.64 159.15	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05 160.96	0.25 Kx50 160.89 161.05 161.13 161.17 161.22 161.47 161.73 161.84
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.22 160.91 161.24	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46	Kx28 179.79 165.69 163.08 161.96 161.50 161.22 161.26 163.80	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.22 161.54 165.67	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 161.22 160.82 160.46	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61	14.00 Kx38 171.75 166.70 164.19 162.61 161.80 161.22 161.23 171.42	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17	80.0 Kx40 166.17 163.61 162.45 161.80 161.47 161.22 160.45 160.03	80.0 Kx41 161.32 161.27 161.23 161.23 161.23 161.23 161.23 161.20 161.21	80.0 Kx42 226.11 181.00 167.57 162.78 161.50 161.22 166.26 176.36	0.10 Kx46 159.76 159.99 160.36 160.73 160.99 161.22 162.27 163.13	14.00 Kx51 163.14 161.63 161.25 161.17 161.22 161.92 163.44	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10	6.08 Kx54 183.87 168.58 164.72 162.81 161.89 161.22 160.12 164.93	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70	3 24.96 Kx56 343.96 241.10 193.93 171.38 163.73 161.22 201.56 333.87	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 161.22 162.82 187.65	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40	12.46 Kx59 208.09 167.01 161.69 160.49 160.61 161.22 169.68 187.46	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.01 161.45	0.10 Kx18 161.85 161.72 161.58 161.43 161.33 161.22 160.65 160.10	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.23 161.23 161.21 161.17	0.10 Kx33 161.96 161.78 161.61 161.45 161.34 161.22 160.57 159.64	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05	0.25 Kx50 160.89 161.05 161.13 161.17 161.22 161.47 161.73
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21	3 6.08 Kx17 395.64 217.74 183.14 169.74 161.22 157.16 167.26 179.77 191.67 202.64	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.22 160.91 161.24 161.65 161.97 162.23	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07	Kx28 179.79 165.69 163.08 161.96 161.20 161.26 163.80 166.62 169.22 171.54	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.22 161.54 165.67 168.79 171.03 172.72	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.82 160.46 160.28 160.18 160.12	37.84 kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33	14.00 Kx38 171.75 166.70 164.19 162.61 161.80 161.22 161.23 171.75 187.38 205.38 223.78	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.15	80.0 Kx40 166.17 163.61 162.45 161.80 161.47 160.45 160.45 169.90 159.83 159.79	80.0 Kx41 161.32 161.27 161.23 161.23 161.23 161.24 161.25 161.23 161.24 161.25 161.23 161.24 161.25 161.26 161.17	80.0 Kx42 226.11 181.00 167.57 162.78 161.50 166.26 176.36 182.29 186.03 188.59	0.10 Kx46 159.76 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.68 163.80	14.00 Kx51 163.14 161.63 161.25 161.17 161.22 161.44 163.44 164.74 165.87 166.90	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75	6.08 Kx54 183.87 168.58 164.72 162.81 161.29 160.12 164.93 172.70 181.00 189.01	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.97 179.33	3 24.96 Kx56 241.10 193.93 171.38 163.73 161.22 201.56 333.87 445.17 531.62 599.42	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 161.22 187.65 212.14 232.83 250.20	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81	12.46 Kx59 208.09 167.01 161.69 160.61 161.22 169.68 187.46 200.82 210.85 218.66	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.01 161.45 162.08 162.79 163.57	0.10 K×18 161.85 161.72 161.58 161.43 161.33 161.22 160.65 160.10 160.15 160.64 161.46	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.23 161.21 161.17 161.12 161.07	0.10 Kx33 161.96 161.78 161.61 161.45 161.34 161.22 160.57 159.64 159.15 159.01 159.16	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05 160.96 160.90 160.85	0.25 Kx50 160.98 161.05 161.13 161.17 161.22 161.47 161.73 161.84 161.88 161.88
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01	3 6.08 Kx17 395.64 217.74 183.14 169.74 161.22 157.16 167.26 179.77 191.67	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.22 160.91 161.24 161.65 161.97	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10	Kx28 179.79 165.69 163.08 161.96 161.20 161.26 163.80 166.62 169.22	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.22 161.54 165.67 168.79 171.03	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 161.22 160.82 160.46 160.28 160.18	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25	14.00 Kx38 171.75 166.70 164.19 162.61 161.80 161.23 171.42 187.38 205.38	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.16 161.15 161.31	80.0 Kx40 166.17 163.61 162.45 161.80 161.47 161.22 160.45 160.03 159.90 159.83	80.0 Kx41 161.32 161.27 161.23 161.23 161.23 161.23 161.21 161.23 161.24 161.25 161.23 161.24 161.25 161.26 161.27 161.28 161.19 161.18 161.18	80.0 Kx42 226.11 181.00 167.57 162.78 161.50 161.22 166.26 176.36 182.29 186.03	0.10 Kx46 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.68	14.00 Kx51 163.14 161.63 161.25 161.17 161.22 161.92 163.44 165.87	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 162.42 162.42 181.36 195.31 204.92	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56	6.08 Kx54 183.87 168.58 164.72 162.81 161.89 161.22 164.93 172.70 181.00	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.97	3 24.96 Kx56 241.10 193.93 171.38 163.73 161.22 201.56 333.87 531.62	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 161.22 162.82 187.65 212.14 232.83	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91	12.46 Kx59 208.09 167.01 161.69 160.61 160.61 169.68 187.46 200.82 210.85	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08 162.79	0.10 Kx18 161.85 161.72 161.58 161.43 161.33 161.22 160.65 160.10 160.15 160.64	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.22 161.23 161.21 161.17 161.12	0.10 Kx33 161.96 161.78 161.61 161.45 161.34 161.22 160.57 159.64 159.15 159.01	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05 160.96 160.90	0.25 Kx50 160.98 161.05 161.13 161.13 161.17 161.22 161.47 161.73 161.84 161.88
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Min: Range:	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26 179.77 191.67 202.64 395.64	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.22 160.91 161.24 161.65 161.97 162.23 171.07	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21	Kx28 179.79 165.69 163.08 161.96 161.20 163.80 161.22 163.80 166.62 169.22 171.54 179.79 161.22 18.573	25.00 Kx29 234.96 179.25 167.86 162.03 161.24 165.67 168.79 171.03 172.72 234.96 161.22 73.74	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 161.22 160.82 160.46 160.28 160.18 160.12 162.67 160.12 2.552	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8	14.00 Kx38 171.75 166.70 164.19 162.61 161.22 161.23 171.42 187.38 205.38 223.78 161.22 263.55	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.16 161.15 161.31 161.15 0.156	80.0 Kx40 166.17 163.61 162.45 161.80 161.42 160.45 160.03 159.90 159.83 159.79 166.17 159.79 6.379	80.0 Kx41 161.32 161.27 161.23 161.23 161.20 161.10 161.18 161.18 161.17 161.32	80.0 Kx42 226.11 181.00 167.57 162.78 161.50 166.26 176.36 182.29 186.03 188.59 226.11	0.10 Kx46 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.68 163.80 163.80	14.00 Kx51 163.14 161.63 161.25 161.15 161.22 161.92 163.44 164.74 165.87 166.90	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104	6.08 Kx54 183.87 168.58 164.72 162.81 161.22 164.93 172.70 181.00 189.01 160.12 28.888	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.97 179.33 245.30 161.22 84.07	3 24.96 Kx56 343.96 241.10 193.93 171.38 163.73 161.22 201.56 333.87 531.62 599.42 599.42 161.22 438.2	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 161.22 187.65 212.14 232.83 250.20 250.20	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81 366.81	12.46 Kx59 208.09 167.01 161.69 160.61 161.22 169.68 187.46 200.82 210.85 218.66	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08 162.79 163.57 211.84 161.01 50.83	0.10 Kx18 161.85 161.72 161.58 161.43 161.33 161.23 160.65 160.10 160.15 160.64 161.46 161.85 160.10 1.745	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.23 161.21 161.17 161.12 161.17 161.12 161.23 161.07 0.152	0.10 Kx33 161.96 161.78 161.61 161.45 161.32 160.57 159.64 159.15 159.01 159.01 159.01 2.955	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05 160.96 160.90 160.85 161.29	0.25 Kx50 160.98 161.05 161.13 161.17 161.22 161.47 161.73 161.88 161.88 161.88
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Min:	3 44.52 Kx15 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22 199.5	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 179.77 191.67 202.64 395.64 157.16 238.5	5.00 Kx22 171.07 163.55 162.23 161.65 161.32 161.22 160.91 161.24 161.65 161.97 162.23 171.07 160.91	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22	Kx28 179.79 165.69 161.96 161.22 161.26 163.80 166.62 169.22 171.54 179.79 161.22	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.54 161.54 165.67 171.03 172.72 234.96 161.22	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.82 160.46 160.28 160.18 160.12 162.67 160.12	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8	14.00 Kx38 171.75 166.70 164.19 162.61 161.23 171.42 187.38 205.38 223.78 161.22	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.16 161.15 161.31 161.15 0.156	80.0 Kx40 166.17 163.61 162.45 161.47 161.22 160.45 160.03 159.90 159.83 159.79 166.17 159.79	80.0 Kx41 161.32 161.27 161.23 161.23 161.23 161.20 161.12 161.18 161.17 161.32 161.18 161.17 161.32 161.32 161.32 161.32 161.17	80.0 Kx42 226.11 181.00 167.57 162.78 161.50 166.26 176.36 182.29 186.03 188.59 226.11 161.22	0.10 Kx46 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.68 163.80 159.76	14.00 Kx51 163.14 161.63 161.25 161.15 161.22 161.92 163.44 164.74 165.87 166.90 161.15	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104	6.08 Kx54 183.87 168.58 164.72 162.81 161.22 164.93 172.70 181.00 189.01 160.12	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.97 179.33 245.30 161.22	3 24.96 Kx56 241.10 193.93 171.38 163.73 161.22 201.56 333.87 445.17 531.62 599.42 599.42 161.22	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 162.82 187.65 212.14 232.83 250.20 161.22	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81 161.22	12.46 Kx59 208.09 167.01 161.69 160.61 161.22 169.68 187.46 200.82 210.85 218.66 160.49	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08 162.79 163.57 211.84 161.01 50.83	0.10 Kx18 161.85 161.72 161.58 161.43 161.33 161.32 160.65 160.10 160.15 160.64 161.46 161.85 160.10	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.23 161.21 161.17 161.12 161.17 161.12 161.23 161.07 0.152	0.10 Kx33 161.96 161.78 161.61 161.45 161.34 161.22 160.57 159.64 159.15 159.01 159.16 161.96 159.01	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05 160.96 160.90 160.85 161.29 160.85	0.25 Kx50 160.98 161.05 161.13 161.17 161.22 161.47 161.73 161.88 161.88 161.88 160.89
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Min: Range:	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22 199.5 Vertical Com	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 179.77 191.67 202.64 395.64 157.16 238.5	5.00 Kx22 171.07 163.55 162.23 161.65 161.32 161.22 160.91 161.24 161.65 161.97 162.23 171.07 160.91	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22	Kx28 179.79 165.69 163.08 161.96 161.20 163.80 161.22 163.80 166.62 169.22 171.54 179.79 161.22 18.573	25.00 Kx29 234.96 179.25 167.86 162.03 161.24 165.67 168.79 171.03 172.72 234.96 161.22 73.74	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 161.22 160.82 160.46 160.28 160.18 160.12 162.67 160.12 2.552	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8	14.00 Kx38 171.75 166.70 164.19 162.61 161.22 161.23 171.42 187.38 205.38 223.78 161.22 263.55	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.16 161.15 161.31 161.15 0.156	80.0 Kx40 166.17 163.61 162.45 161.80 161.42 160.45 160.03 159.90 159.83 159.79 166.17 159.79 6.379	80.0 Kx41 161.32 161.27 161.23 161.23 161.20 161.10 161.18 161.18 161.17 161.32	80.0 Kx42 226.11 181.00 167.57 162.78 161.50 166.26 176.36 182.29 186.03 188.59 226.11 161.22	0.10 Kx46 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.68 163.80 159.76	14.00 Kx51 163.14 161.63 161.25 161.15 161.22 161.92 163.44 164.74 165.87 166.90 161.15	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104	6.08 Kx54 183.87 168.58 164.72 162.81 161.22 164.93 172.70 181.00 189.01 160.12 28.888	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.97 179.33 245.30 161.22 84.07	3 24.96 Kx56 343.96 241.10 193.93 171.38 163.73 161.22 201.56 333.87 531.62 599.42 599.42 161.22 438.2	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 162.82 187.65 212.14 232.83 250.20 161.22	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81 161.22	12.46 Kx59 208.09 167.01 161.69 160.61 161.22 169.68 187.46 200.82 210.85 218.66 160.49	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08 162.79 163.57 211.84 161.01 50.83	0.10 Kx18 161.85 161.72 161.58 161.43 161.33 161.23 160.65 160.10 160.15 160.64 161.46 161.85 160.10 1.745	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.23 161.21 161.17 161.12 161.17 161.12 161.23 161.07 0.152	0.10 Kx33 161.96 161.78 161.61 161.45 161.32 160.57 159.64 159.15 159.01 159.01 159.01 2.955	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05 160.96 160.90 160.85 161.29 160.85	0.25 Kx50 160.98 161.05 161.13 161.17 161.22 161.47 161.73 161.88 161.88 161.88 160.89
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Min: Range: Notes	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22 199.5 Vertical Con 3 4.45	3 80.0 K×16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0 multiple of the second	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26 179.77 191.67 202.64 395.64 157.16 238.5 ones 3 0.61	5.00 Kx22 171.07 163.55 162.23 161.63 161.29 161.22 160.91 161.24 161.65 161.97 162.23 171.07 160.91 10.154 3 0.50	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22 1,213.0 3 4.45	Kx28 179.79 165.69 163.08 161.90 161.22 161.26 163.80 166.62 169.22 171.54 179.79 161.22 18.573 OU2B 3 2.80	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.22 161.54 165.67 168.79 171.03 172.72 234.96 161.22 73.74 OU2B 3 2.50	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.82 160.46 160.28 160.12 162.67 160.12 2.552 OU2B 3 0.30	37.84 kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8 3 3 3.78	14.00 Kx38 171.75 166.70 164.19 162.61 161.22 161.23 171.42 187.38 205.38 223.78 161.22 0U28 3 1.40	5.00 kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.15 161.31 161.15 0.156 3 0.50	80.0 Kx40 166.17 163.61 162.45 161.47 161.47 160.45 160.03 159.90 159.79 166.17 159.79 0028 3 8.00	80.0 Kx41 161.32 161.25 161.23 161.23 161.23 161.23 161.24 161.25 161.23 161.24 161.25 161.26 161.17 161.32 161.32 161.32 161.32 161.32 3 8.00	80.0 Kx42 226.11 181.00 167.57 161.50 166.26 176.36 188.59 226.11 161.22 186.03 188.59 226.11 161.22 64.89 3 8.00	0.10 Kx46 159.76 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.68 163.80 159.76 4.042 3 0.01	14.00 Kx51 163.14 161.63 161.25 161.15 161.22 161.92 163.44 165.87 166.90 161.15 5.746 3 1.40	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22 190.6 3 8.00	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104 3 0.61	6.08 Kx54 183.87 168.58 164.72 161.22 160.12 164.93 172.70 181.00 189.01 160.12 28.888 OU2B 3 0.61	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.97 179.33 245.30 161.22 84.07 OU2B 3 4.40	3 X4.96 X56 241.10 193.93 171.38 163.73 161.22 201.56 333.87 445.17 531.62 599.42 599.42 161.22 438.2 0U2B	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 162.82 187.65 212.14 232.83 250.20 161.22 88.97 3 1.25	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81 161.22 205.6 3 1.25	12.46 Kx59 208.09 167.01 161.69 160.49 160.61 161.22 169.68 187.46 200.82 210.85 218.66 160.49 58.18	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.45 162.08 162.79 163.57 211.84 161.01 50.83 OU2B 3 1.25	0.10 Kx18 161.85 161.72 161.58 161.43 161.33 161.22 160.65 160.65 160.10 161.46 161.85 160.10 1.745 OU2B 4 0.01	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.23 161.21 161.17 161.23 161.07 161.23 161.07 0.152 4 0.05	0.10 Kx33 161.96 161.78 161.61 161.45 161.34 160.57 159.64 159.15 159.16 161.96 159.01 2.955 OU2B 4 0.01	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05 160.90 160.85 161.29 160.85 0.441 4 0.25	0.25 Kx50 160.98 161.05 161.13 161.17 161.22 161.47 161.73 161.84 161.88 161.88 161.88 161.88 161.89 0.988 4 0.03
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Range: Notes Layer K: Ft/D Multiplier	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22 199.5 Vertical Con 3 4.45 Kz15	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0 nductivity Z 3 8.00 Kz16	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26 179.77 191.67 202.64 395.64 157.16 238.5 ones 3 0.61 Kz17	5.00 Kx22 171.07 163.55 162.23 161.63 161.39 161.22 160.91 161.24 161.65 161.97 162.23 171.07 160.91 10.154 3 0.50 Kz22	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22 1,213.0 3 4.45 Kz27	Kx28 179.79 165.69 163.08 161.96 161.22 161.26 163.80 166.62 169.22 171.54 179.79 161.22 18.573 OU2B 3 2.80 K228	25.00 Kx29 234.96 179.25 167.86 162.03 161.22 161.54 165.67 168.79 171.03 172.72 234.96 161.22 73.74 OU2B 3 2.50 K229	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.82 160.46 160.28 160.18 160.12 2.552 OU2B 3 0.30 Kz36	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8 3 3.78 Kz37	14.00 Kx38 171.75 166.70 164.19 162.61 161.22 161.23 171.42 187.38 205.38 223.78 161.22 0U28 3 1.40 K238	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.16 161.15 161.31 161.15 0.156 3 0.50 Kz39	80.0 Kx40 166.17 163.61 162.45 161.47 161.47 160.45 160.03 159.90 159.83 159.79 166.17 159.79 3 8.00 Kz40	80.0 Kx41 161.32 161.25 161.23 161.23 161.24 161.25 161.26 161.27 161.28 161.29 161.18 161.18 161.17 161.32 161.17 0.144 OU28 3 8.00 Kz41	80.0 Kx42 226.11 181.00 167.75 161.50 166.26 176.36 182.29 186.03 188.59 226.11 161.22 64.89 3 8.00 Kz42	0.10 Kx46 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.68 163.80 163.80 159.76 4.042 3 0.01 Kz46	14.00 Kx51 163.14 161.63 161.25 161.15 161.22 161.92 163.44 164.74 165.87 166.90 161.15 5.746 3 1.40 Kz51	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22 190.6 3 8.00 Kz52	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104 3 0.61 Kz53	6.08 Kx54 183.87 168.58 164.72 162.81 161.22 160.12 164.93 172.70 189.01 189.01 160.12 28.888 OU2B 3 0.61 Kz54	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.97 179.33 245.30 161.22 84.07 OU2B 3 4.40 K255	3 24.90 Kx56 241.00 193.93 171.38 163.73 161.22 201.56 333.87 445.17 531.62 599.42 161.22 438.2 OU2B 3 2.500 K256	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 162.82 187.65 212.14 232.83 250.20 161.22 88.97 3 1.25 Kz57	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81 161.22 205.6 3 1.25 Kz58	12.46 Kx59 208.09 167.01 161.69 160.61 161.22 169.68 187.46 200.82 210.85 218.66 160.49 58.18 3 1.25 Kz59	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08 162.79 163.57 211.84 161.01 50.83 OU2B 3 1.25 Kz60	0.10 Kx18 161.85 161.72 161.58 161.43 161.33 161.32 160.65 160.65 160.64 161.46 161.85 160.10 1.745 OU2B 4 0.01 Kz18	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.23 161.21 161.17 161.23 161.23 161.07 0.152 4 0.05 Kz32	0.10 Kx33 161.96 161.78 161.61 161.45 161.34 160.57 159.64 159.15 159.16 159.01 2.955 OU28 4 0.01 Kz33	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05 160.96 160.90 160.85 161.29 160.85 0.441 4 0.25 Kz49	0.25 Kx50 160.98 161.05 161.13 161.17 161.22 161.47 161.73 161.84 161.88 161.88 161.88 161.88 160.89 0.988 4 0.03 K250
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Max: Range: Notes Layer K: Ft/D	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22 199.5 Vertical Con 3 4.45	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0 nductivity Z 3 8.00 Kz16 161.555	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26 179.77 191.67 202.64 395.64 157.16 238.5 ones 3 0.61	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.22 160.91 161.24 161.65 161.97 162.23 171.07 160.91 10.154 3 0.50 Kz22 163.471	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22 1,213.0 3 4.45 Kz27 163.266	Kx28 179.79 165.69 163.08 161.96 161.22 161.26 163.80 166.62 169.22 171.54 179.79 161.22 18.573 OU2B 3 2.80 K228	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.54 165.67 168.79 171.03 172.72 234.96 161.22 73.74 OU2B 3 2.50 Kz29 162.468	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.82 160.46 160.28 160.18 160.12 2.552 OU2B 3 0.30 Kz36 161.122	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8 3 3.78 Kz37 161.814	14.00 Kx38 171.75 166.70 164.19 162.61 161.23 171.42 187.38 205.38 223.78 161.22 62.559 OU2B 3 1.40 Kz38 161.829	5.00 kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.15 161.31 161.15 0.156 3 0.50	80.0 Kx40 166.17 163.61 162.45 161.21 160.45 160.03 159.90 159.83 159.79 166.17 159.79 0U28 3 8.00 K240 161.241	80.0 Kx41 161.32 161.25 161.23 161.23 161.24 161.25 161.26 161.27 161.28 161.29 161.18 161.18 161.17 161.32 161.17 0.144 OU28 3 8.00 Kz41	80.0 Kx42 226.11 181.00 167.57 162.78 166.20 176.36 182.29 186.03 188.59 226.11 161.22 64.89 3 8.00 Kz42 161.069	0.10 Kx46 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.68 163.80 159.76 4.042 3 0.01 Kz46 171.362	14.00 Kx51 163.14 161.63 161.25 161.15 161.22 161.92 163.44 164.74 165.87 166.90 161.15 5.746 3 1.40 Kz51 161.688	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22 190.6 3 8.00	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104 3 0.61 Kz53 163.215	6.08 Kx54 183.87 168.58 164.72 162.81 161.22 160.12 164.93 172.70 181.00 189.01 160.12 28.888 OU2B 3 0.61 Kz54 163.600	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.97 179.33 245.30 161.22 84.07 OU2B 3 4.40 K255	3 24.96 Kx56 241.10 193.93 171.38 163.73 161.22 201.56 333.87 531.62 599.42 161.22 438.2 OU2B 3 2.50 K256 163.586	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 162.82 187.65 212.14 232.83 250.20 161.22 88.97 3 1.25 Kz57 161.324	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81 161.22 205.6 3 1.25 Kz58	12.46 Kx59 208.09 167.01 161.69 160.61 161.22 169.68 187.46 200.82 210.85 218.66 160.49 58.18 3 1.25 Kz59 158.792	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.45 162.08 162.79 163.57 211.84 161.01 50.83 OU2B 3 1.25	0.10 Kx18 161.85 161.72 161.58 161.43 161.33 161.32 160.65 160.10 160.15 160.64 161.85 160.10 1.745 OU2B 4 0.01 Kz18 163.521	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.23 161.21 161.17 161.12 161.23 161.07 0.152 4 0.05 Kz32 163.706	0.10 Kx33 161.96 161.78 161.61 161.45 161.34 161.22 160.57 159.64 159.15 159.01 2.955 OU2B 4 0.01 Kz33 161.29	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05 160.96 160.90 160.85 161.29 160.85 0.441 4 0.25 Kz49	0.25 Kx50 160.98 161.05 161.13 161.17 161.22 161.47 161.73 161.84 161.88 161.88 161.88 160.89 0.988 4 0.033 Kz50 167.824
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Min: Range: Notes Layer K: Ft/D Multiplier 0.1 0.3 0.5	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22 199.5 Vertical Con 3 4.45 Kz15 161.603 161.312 161.260	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0 Muctivity Z 3 8.00 Kz16 161.255 161.297 161.252	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26 179.77 191.67 202.64 395.64 157.16 238.5 ones 3 0.61 Kz17 164.622 161.958 161.523	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.24 161.65 161.91 162.23 171.07 160.91 10.154 3 0.50 Kz22 163.471 163.63 161.683 161.408	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22 1,213.0 3 4.45 Kz27 163.266 161.926 161.566	Kx28 179.79 165.69 163.08 161.96 161.20 161.21 161.22 163.80 166.62 169.22 171.54 179.79 161.22 18.573 OU2B 3 2.80 K:28 161.520 161.319 161.275	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.54 165.67 168.79 171.03 172.72 234.96 161.22 73.74 OU2B 3 2.50 K229 162.468 161.482 161.482 161.482	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.82 160.46 160.28 160.18 160.12 162.67 160.12 2.552 OU2B 3 0.30 Kz36 161.122 161.160 161.187	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8 3 3.78 Kz37 161.814 161.367 161.283	14.00 Kx38 171.75 166.70 164.19 162.61 161.80 161.23 171.42 187.38 205.38 223.78 161.22 62.559 OU2B 3 161.829 161.829 161.829 161.829	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.16 161.15 0.156 3 0.50 Kz39 161.228 161.228 161.223	80.0 Kx40 166.17 163.61 162.45 161.47 161.47 161.47 160.45 160.03 159.90 159.79 166.17 159.79 0U28 3 8.00 Kz40 161.221 161.221 161.221	80.0 Kx41 161.32 161.25 161.23 161.23 161.23 161.24 161.25 161.18 161.17 161.32 161.18 161.17 0.144 OU2B 3 8.00 Kz41 161.236 161.225 161.224	80.0 Kx42 226.11 181.00 167.57 162.78 166.26 176.36 188.29 188.59 226.11 161.22 64.89 3 8.00 Kz42 161.023	0.10 Kx46 159.76 159.99 160.36 160.73 160.27 163.13 163.49 163.80 159.76 4.042 3 0.01 Kz46 171.362 166.218 163.772	14.00 Kx51 163.14 161.63 161.25 161.17 161.22 163.44 164.74 165.87 166.90 161.15 5.746 3 1.40 Kz51 161.358 161.358	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22 190.6 3 8.00 Kz52 164.603 162.428 161.780	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.75 171.07 160.97 10.104 3 0.61 Kz53 163.215 161.351 161.341	6.08 Kx54 183.87 168.58 164.72 162.81 161.22 164.93 172.70 189.01 160.12 28.88 OU2B 3 0.61 Kz54 163.600 161.734 161.429	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 176.97 176.97 179.33 245.30 161.22 84.07 OU2B 3 4.40 K255 161.233	3 24.96 Kx56 241.10 193.93 171.38 163.73 161.22 201.56 333.87 531.62 599.42 1531.62 599.42 161.22 438.2 OU2B 3 2.50 k256 163.586 163.586 163.586	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 162.82 187.65 212.14 232.83 250.20 161.22 88.97 3 161.324 161.325 161.225	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81 161.22 205.6 3 1.2.25 Kz58 162.480 161.551 161.364	12.46 Kx59 208.09 167.01 161.69 160.61 161.22 169.68 187.46 200.82 210.85 218.66 160.49 58.18 1	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08 162.79 163.57 211.84 161.01 50.83 OU2B 3 162.538 161.626 161.409	0.10 Kx18 161.85 161.72 161.58 161.33 161.22 160.65 160.10 160.64 161.85 160.40 161.85 160.10 1.745 0U28 4 0.01 Kz18 163.521 162.580 162.009	0.50 Kx32 161.21 161.22 161.22 161.22 161.23 161.23 161.21 161.12 161.23 161.07 0.152 4 0.05 Kz32 163.706 161.547 161.286	0.10 Kx33 161.96 161.78 161.61 161.34 161.22 160.57 159.64 159.15 159.16 159.16 159.01 2.955 OU28 4 0.01 Kz33 161.290	2.50 Kx49 161.29 161.26 161.23 161.23 161.24 161.23 161.24 161.25 161.26 161.27 161.28 161.29 160.85 0.441 4 0.25 Kz49 162.993 161.705 161.429	0.25 Kx50 160.98 161.05 161.13 161.17 161.22 161.47 161.84 161.88 161.88 161.88 161.88 161.88 161.88 163.89 0.988 4 0.03 Kz50 167.824 163.367 162.138
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Min: Range: Notes Layer K: Ft/D Multiplier 0.1 0.3 0.5 0.7	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22 199.5 Vertical Con 3 4.45 Kz15 161.603 161.312 161.260 161.238	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0 nductivity Z 3 8.00 Kz16 161.555 161.555 161.297 161.252 161.236	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26 179.77 191.67 202.64 395.64 157.16 238.5 ones 3 0.61 Kz17 164.622 161.523 161.523 161.349	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.24 161.65 161.91 161.24 161.65 161.91 162.23 171.07 160.91 10.154 3 0.50 Kz22 163.471 161.683 161.408 161.408 161.300	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22 1,213.0 3 4.45 Kz27 163.266 161.326 161.566 161.382	Kx28 179.79 165.69 163.08 161.50 161.22 161.26 163.80 166.62 169.22 171.54 179.79 161.22 18.573 OU2B 3 161.50 161.21 18.573 OU2B 3 161.520 161.319 161.275 161.248	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.22 161.54 165.67 168.79 171.03 172.72 234.96 161.22 73.74 OU2B 3 2.50 Kz29 162.468 161.482 161.327 161.267	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.82 160.46 160.28 160.12 162.67 160.12 2.552 OU2B 3 0.30 Kz36 161.122 161.160 161.187 161.205	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8 3 3.78 Kz37 161.814 161.814 161.367 161.283 161.248	14.00 Kx38 171.75 166.70 164.19 162.61 161.80 161.23 171.42 187.38 205.38 223.78 161.22 62.559 OU2B 3 1.40 Kz38 161.829 161.400 161.339 161.275	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.16 161.15 161.31 161.15 0.156 3 0.50 Kz39 161.228 161.223 161.223	80.0 Kx40 166.17 163.61 162.45 161.47 161.21 160.45 160.03 159.83 159.79 6.379 0U2B 3 8.00 K240 161.221 161.224 161.224	80.0 Kx41 161.32 161.25 161.23 161.23 161.23 161.23 161.23 161.23 161.24 161.25 161.23 161.24 161.17 161.32 161.17 0.144 OU28 3 8.00 Kz41 161.236 161.225 161.224 161.236	80.0 Kx42 226.11 181.00 167.57 162.78 161.50 161.22 188.59 226.11 161.22 188.59 226.11 161.22 64.89 3 8.00 Kz42 161.178 161.203 161.214	0.10 Kx46 159.76 159.99 160.36 160.73 160.99 161.22 162.27 163.49 163.80 159.76 4.042 3 0.01 Kz46 171.362 163.772 163.395	14.00 Kx51 163.14 161.63 161.25 161.17 161.22 163.44 164.74 165.87 166.90 161.15 5.746 3 1.40 Kz51 161.281 161.281	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22 190.6 3 8.00 Kz52 164.603 162.428 161.780 161.471	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104 3 0.61 Kz53 163.215 161.351 161.351 161.341 161.268	6.08 Kx54 183.87 168.58 164.72 162.81 161.22 160.12 164.93 172.70 189.01 189.01 160.12 28.888 0U2B 3 0.61 Kz54 163.600 161.724 161.429 161.309	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 176.97 179.33 245.30 161.22 84.07 OU2B 3 4.40 K255 161.233 161.223 161.233 161.233 161.226	3 24.96 Kx56 241.10 193.93 171.38 163.73 161.22 201.56 333.87 445.17 445.17 531.62 599.42 161.22 438.2 OU2B 3 2.50 Kz56 163.586 160.801 160.737 160.918	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 161.22 187.65 212.14 232.83 250.20 161.22 88.97 3 1.25 Kz57 161.324 161.225 161.226 161.223	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81 161.22 205.6 3 1.25 Kz58 161.231 161.364 161.283	12.46 Kx59 208.09 167.01 161.69 160.61 161.22 169.68 187.46 200.82 210.85 218.66 160.49 58.18	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08 162.79 163.57 211.84 161.01 50.83 OU2B 3 162.538 161.409 161.307	0.10 Kx18 161.85 161.72 161.58 161.33 161.22 160.65 160.65 160.10 160.64 161.46 161.85 160.10 1.745 OU2B 4 0.01 Kz18 162.580 162.009 161.611	0.50 Kx32 161.21 161.22 161.22 161.22 161.23 161.23 161.21 161.12 161.23 161.23 161.07 0.152 4 0.05 Kz32 163.706 161.230	0.10 Kx33 161.96 161.78 161.61 161.34 161.22 160.57 159.64 159.16 159.16 159.16 159.10 159.10 159.01 161.29 16	2.50 Kx49 161.29 161.26 161.23 161.23 161.24 161.23 161.24 161.25 160.96 160.90 160.85 161.29 160.85 0.441 4 0.25 Kz49 162.993 161.429 161.429 161.310	0.25 Kx50 160.88 161.05 161.13 161.17 161.22 161.47 161.84 161.88 161.88 161.88 161.88 161.88 160.89 0.988 4 0.988 4 167.824 163.367 163.367 162.138 161.606
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Min: Range: Notes Layer K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22 199.5 Vertical Con 3 4.45 Kz15 161.603 161.312 161.260	3 80.0 K×16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0 nductivity Z 3 8.00 Kz16 161.555 161.297 161.252 161.236 161.227	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26 179.77 191.67 202.64 395.64 157.16 238.5 ones 3 0.61 Kz17 164.622 161.958 161.523 161.349 161.274	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.22 160.91 161.24 161.65 161.97 162.23 171.07 160.91 10.154 3 0.50 Kz22 163.471 161.683 163.408 161.408 161.300 161.254	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22 1,213.0 3 4.45 Kz27 163.266 161.926 161.926 161.382 161.382 161.291	Kx28 179.79 165.69 163.08 161.96 161.22 161.26 163.80 166.62 169.22 171.54 179.79 161.22 18.573 OU2B 3 2.80 K228 161.520 161.275 161.248 161.223	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.22 161.54 165.67 168.79 171.03 172.72 234.96 161.22 73.74 OU2B 3 2.50 K229 162.468 161.482 161.482 161.482 161.240	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.82 160.46 160.28 160.12 162.67 160.12 162.67 160.12 0U2B 3 0.30 Kz36 161.122 161.160 161.187 161.205 161.215	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8 3 3.78 Kz37 161.814 161.367 161.283 161.283 161.248 161.233	14.00 Kx38 171.75 166.70 164.19 162.61 161.22 161.23 171.42 187.38 205.38 223.78 161.22 62.559 OU2B 3 1.40 K238 161.829 161.339 161.275 161.244	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.15 161.31 161.15 0.156 3 0.50 Kz39 161.228 161.223 161.223 161.223 161.222	80.0 Kx40 166.17 163.61 162.45 161.47 161.21 160.45 160.03 159.90 159.83 159.79 6.379 OU28 3 8.00 K240 161.221 161.223 161.223	80.0 Kx41 161.32 161.25 161.23 161.23 161.23 161.23 161.24 161.25 161.27 161.18 161.17 161.32 161.32 161.32 161.32 161.32 161.32 161.32 161.32 161.32 161.32 161.32 161.32 161.24 161.25 161.236 161.224 161.223 161.223	80.0 Kx42 226.11 181.00 167.57 162.78 161.50 166.26 176.36 188.59 226.11 161.22 488.59 226.11 161.22 64.89 3 8.00 Kz42 161.203 161.203 161.214 161.219	0.10 Kx46 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.68 163.80 159.76 4.042 3 0.01 Kz46 171.362 166.218 163.772 162.395 161.718	14.00 Kx51 163.14 161.63 161.25 161.15 161.22 161.22 161.22 163.44 164.74 165.87 166.90 161.15 5.746 3 1.40 K251 161.358 161.228 161.248 161.248 161.233	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22 190.6 3 8.00 Kz52 164.603 162.428 164.603 162.428 161.780 161.471 161.325	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.75 171.07 160.97 10.104 3 0.61 Kz53 163.215 161.551 161.551 161.240	6.08 Kx54 183.87 168.58 164.72 161.22 160.12 164.93 172.70 189.01 160.12 28.888 OU2B 3 0.61 Kz54 163.734 164.439 160.12 28.888 OU2B 3 0.61 Kz54 163.600 161.734 161.429 161.309 161.257	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.30 245.30 161.22 84.07 OU2B 3 4.40 K255 161.233 161.224	3 24.96 Kx56 141.00 193.93 171.38 163.73 161.22 201.56 333.87 445.17 531.62 599.42 161.22 438.2 OU2B 0U2B 161.22 438.2 0U2B 161.62 160.737 160.918 161.073	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 161.22 187.65 212.14 232.83 250.20 161.22 88.97 3 1.25 Kz57 161.224 161.225 161.223 161.223 161.223	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 165.19 161.22 167.58 220.40 275.06 323.91 366.81 161.22 205.6 1.25 Kz58 162.480 161.511 161.364 161.283 161.283	12.46 Kx59 208.09 167.01 161.69 160.61 161.22 169.68 187.46 200.82 218.66 160.49 58.18 3 1.25 Kz59 160.409 160.4057 160.4257 161.062 161.157	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08 162.79 163.57 211.84 161.01 50.83 OU2B 3 1.25 Kz60 161.2538 161.626 161.307 161.307	0.10 Kx18 161.85 161.72 161.58 161.33 161.22 160.65 160.10 160.15 160.64 161.85 160.10 1.745 OU2B 4 0.01 Kz18 162.580 162.580 162.090 161.611 161.390	0.50 Kx32 161.21 161.22 161.22 161.22 161.23 161.23 161.21 161.12 161.23 161.07 0.152 4 0.05 Kz32 163.706 161.286 161.230 161.220	0.10 Kx33 161.96 161.78 161.61 161.45 161.22 160.57 159.64 159.16 159.16 159.16 159.16 159.01 2.955 OU2B 4 0.01 Kz33 161.229 161.223	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05 160.90 160.90 160.85 0.441 4 0.25 Kz49 161.29 161.705 161.429 161.310 161.258	0.25 Kx50 160.98 161.05 161.13 161.17 161.22 161.47 161.73 161.84 161.88 161.88 161.88 161.88 161.88 161.88 163.867 167.824 163.367 162.138 161.606 161.378
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Min: Range: Notes Layer K: Ft/D Multiplier 0.1 0.3 0.5 0.7	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22 199.5 Vertical Con 3 4.45 Kz15 161.603 161.312 161.260 161.238 161.229	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0 multiple for the second	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26 179.77 191.67 202.64 395.64 157.16 238.5 ones 3 0.61 Kz17 164.622 161.523 161.234 161.274 161.222	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.24 161.65 161.91 161.24 161.65 161.91 162.23 171.07 160.91 10.154 3 0.50 Kz22 163.471 161.683 161.408 161.408 161.300	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22 1,213.0 3 4.45 Kz27 163.266 161.926 161.566 161.566 161.562 161.222	Kx28 179.79 165.69 163.08 161.96 161.22 161.26 163.80 166.62 169.22 171.54 179.79 161.22 18.573 OU2B 3 2.80 K228 161.520 161.275 161.248 161.223	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.22 161.54 165.67 168.79 171.03 172.72 234.96 161.22 73.74 OU2B 3 2.50 Kz29 162.468 161.327 161.267 161.227 161.240	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.82 160.46 160.28 160.12 162.67 160.12 2.552 OU2B 3 0.30 Kz36 161.122 161.160 161.187 161.205	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8 3 3.78 Kz37 161.814 161.837 161.814 161.283 161.248 161.233 161.222	14.00 Kx38 171.75 166.70 164.19 162.61 161.23 171.42 187.38 205.38 223.78 161.22 0U28 3 1.40 Kz38 161.829 161.339 161.225 161.224	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.16 161.15 161.31 161.15 0.156 3 0.50 Kz39 161.228 161.223 161.223	80.0 Kx40 166.17 163.61 162.45 161.21 160.45 160.03 159.90 159.79 166.17 159.79 166.17 159.79 166.17 159.79 6.379 OU28 3 8.00 K240 161.221 161.223 161.223 161.223 161.223	80.0 Kx41 161.32 161.25 161.23 161.23 161.23 161.23 161.23 161.24 161.25 161.23 161.24 161.17 161.32 161.17 0.144 OU28 3 8.00 Kz41 161.236 161.225 161.224 161.223	80.0 Kx42 226.11 181.00 167.57 162.78 161.50 166.26 176.36 182.29 186.03 188.59 226.11 161.22 64.89 3 8.00 Kz42 161.078 161.214 161.221	0.10 Kx46 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.80 163.80 163.80 159.76 4.042 3 0.01 Kz46 171.362 166.218 163.772 162.395 161.718 161.222	14.00 Kx51 163.14 161.63 161.25 161.15 161.22 161.92 163.44 164.74 165.87 166.90 161.15 5.746 3 1.40 K251 161.288 161.281 161.281 161.281 161.281 161.283 161.283 161.283 161.233 161.223	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22 190.6 3 8.00 Kz52 164.603 162.428 161.780 161.471	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104 3 0.61 Kz53 163.215 161.351 161.351 161.341 161.268	6.08 Kx54 183.87 168.58 164.72 160.12 160.12 164.93 172.70 181.00 189.01 160.12 28.888 OU2B 3 0.61 Kz54 163.309 161.222	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.30 245.30 161.22 84.07 OU2B 3 4.40 K255 161.223 161.224 161.224 161.224 161.224 161.224 161.224	3 24.96 Kx56 343.96 241.10 193.93 171.38 163.73 161.22 201.56 333.87 445.17 531.62 599.42 161.22 438.2 OU2B 3 163.586 160.918 160.737 161.222	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 162.82 187.65 212.14 232.83 250.20 161.22 88.97 3 1.25 Kz57 161.324 161.223 161.223 161.223 161.223 161.223 161.224	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81 161.22 205.6 3 1.25 Kz58 161.231 161.364 161.283	12.46 Kx59 208.09 167.01 161.69 160.49 160.61 161.22 169.68 187.46 200.82 210.85 218.66 160.49 58.18 3 1.25 K259 160.857 160.857 161.062 161.052	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08 162.79 163.57 211.84 161.01 50.83 OU2B 3 162.538 161.409 161.307	0.10 Kx18 161.85 161.72 161.58 161.22 160.65 160.15 160.65 160.16 160.15 160.41 161.43 0.01 Kz18 163.521 162.009 162.009 162.009 161.431 161.390 161.222	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.23 161.21 161.21 161.21 161.23 161.07 0.152 4 0.05 Kz32 163.706 161.547 161.286 161.220 161.222	0.10 Kx33 161.96 161.78 161.61 161.45 160.57 159.64 159.15 159.16 159.16 159.16 159.01 2.955 OU2B 4 0.01 Kz33 161.299 161.223 161.229 161.222	2.50 Kx49 161.29 161.26 161.23 161.23 161.24 161.23 161.24 161.25 160.96 160.90 160.85 161.29 160.85 0.441 4 0.25 Kz49 162.993 161.429 161.429 161.310	0.25 Kx50 160.98 161.05 161.13 161.17 161.22 161.47 161.73 161.88 161.88 161.88 161.88 161.88 161.88 161.89 0.988 4 0.03 Kz50 167.824 163.367 162.138 161.222
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Min: Range: Notes Layer K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 4 6 8 10 Max: Range: 10 10 10 10 10 10 10 10 10 10	3 44.52 Kx15 260.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 194.11 200.48 360.72 161.22 199.5 Vertical Corr 3 4.45 K215 161.603 161.312 161.603 161.312 161.238 161.229 161.222 161.204 161.204	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0 nductivity Z 3 8.00 Kz16 161.555 161.297 161.252 161.227 161.222 161.207 161.220	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 179.77 191.67 202.64 395.64 157.16 238.5 ones 3 0.61 Kz17 164.622 161.523 161.349 161.274 161.079 161.009	5.00 Kx22 171.07 163.55 162.23 161.63 161.39 161.22 160.91 161.24 161.65 161.97 162.23 171.07 160.91 10.154 3 0.50 K222 163.471 161.683 161.408 161.254 161.225 161.225 161.254 161.225	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22 1,213.0 3 4.45 Kz27 163.266 161.926 161.566 161.382 161.291 161.222 160.989 160.834	Kx28 179.79 165.69 163.08 161.96 161.22 161.26 163.80 166.62 169.22 171.54 179.79 161.22 18.573 OU2B 3 2.80 K228 161.520 161.319 161.225 161.222 161.222 161.221 161.222 161.232 161.241	25.00 kx29 234.96 179.25 167.86 163.56 162.03 161.54 165.67 168.79 171.03 172.72 234.96 161.22 73.74 OU2B 0 K229 162.468 161.482 161.482 161.482 161.247 161.240 161.227 161.240 161.221 161.73 161.55	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.82 160.46 160.28 160.18 160.12 2.552 OU2B 3 0.30 Kz36 161.122 161.160 161.187 161.205 161.215 161.222 161.247 161.262	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8 3 3.78 Kz37 161.814 161.367 161.283 161.248 161.233 161.222 161.192 161.177	14.00 Kx38 171.75 166.70 164.19 162.61 161.80 161.21 161.23 171.42 187.38 205.38 223.78 161.22 62.559 OU2B 3 1.40 Kz38 161.829 161.460 161.339 161.224 161.225 161.224 161.225 161.224 161.225 161.224 161.225 161.226 161.226 161.226 161.226 161.226	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.16 161.16 161.15 0.156 3 0.50 Kz39 161.228 161.223 161.223 161.223 161.222 161.222 161.221 161.221	80.0 Kx40 166.17 163.61 162.45 161.87 161.47 160.45 160.03 159.90 159.83 159.79 166.17 159.79 166.17 159.79 6.379 OU28 8.00 Kz40 161.221 161.223 161.221 161.221 161.221 161.221	80.0 Kx41 161.32 161.23 161.23 161.23 161.23 161.24 161.25 161.20 161.21 161.22 161.23 161.24 161.18 161.17 0.144 OU28 3 8.00 Kz41 161.225 161.223 161.223 161.223 161.224 161.221 161.221	80.0 Kx42 226.11 181.00 167.57 162.78 161.22 166.26 176.36 182.29 186.03 188.59 226.11 161.22 64.89 3 8.00 Kz42 161.069 161.2178 161.221 161.221 161.221 161.231	0.10 Kx46 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.68 163.80 159.76 4.042 3 0.01 Kz46 171.362 166.218 163.772 162.395 161.718 161.222 159.774 159.110	14.00 Kx51 163.14 161.63 161.25 161.15 161.22 161.22 163.44 164.74 165.87 166.90 161.15 5.746 3 1.40 Kz51 161.688 161.281 161.281 161.223 161.221 161.222 161.235	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22 190.6 3 8.00 Kz52 164.603 162.428 161.780 161.780 161.782 160.915 160.755	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104 3 0.61 Kz53 163.215 161.341 161.268 161.240 161.222 161.176 161.159	6.08 Kx54 183.87 168.58 164.72 162.81 161.22 160.12 164.93 172.70 181.00 189.01 160.12 28.888 OU2B 3 0.61 Kz54 163.600 161.734 161.227 161.227 161.229 161.221 161.2257 161.226 161.221 161.225 161.222 161.226 161.221 161.225	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.97 179.33 245.30 161.22 84.07 OU2B 3 4.40 K255 161.233 161.224 161.222 161.222 161.224 161.221 161.221 161.221 161.223 161.224 161.225	3 24.96 Kx56 241.10 193.93 171.38 163.73 161.22 201.56 333.87 531.62 599.42 161.22 438.2 0U2B 3 2.50 K256 163.586 160.801 160.737 160.738 161.222 161.249 161.222 161.949 162.651	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 162.82 187.65 212.14 232.83 250.20 161.22 88.97 3 1.25 K257 161.223 161.223 161.224 161.225 161.224 161.225 161.224 161.225 161.224 161.225 161.224 161.225 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81 161.22 205.6 3 1.25 K258 162.480 161.551 161.283 161.221 161.222 161.223 161.224 161.225 161.225 161.231 161.248 161.251 161.221 161.221 161.223 161.248 161.251 161.251 161.215 161.116	12.46 Kx59 208.09 167.01 161.69 160.41 161.22 169.68 187.46 200.82 210.85 218.66 160.49 58.18 3 1.25 K259 160.409 160.627 161.062 161.22 161.414 161.513	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.27 161.45 162.08 162.79 163.57 211.84 161.01 50.83 OU2B 3 1.25 Kz60 162.538 161.626 161.409 161.307 161.258 161.222 161.107 161.281 161.2032	0.10 Kx18 161.85 161.72 161.58 161.43 161.33 161.32 160.65 160.10 160.15 160.64 161.85 160.10 1.745 OU2B 4 0.01 Kz18 163.521 162.580 162.580 161.221 161.222 160.991	0.50 Kx32 161.21 161.22 161.22 161.22 161.23 161.23 161.21 161.23 161.17 161.23 161.23 161.07 0.152 4 0.05 Kz32 163.706 161.547 161.230 161.230 161.222 161.274 161.339	0.10 Kx33 161.96 161.78 161.61 161.45 161.34 160.57 159.64 159.15 159.01 2.955 OU2B 4 0.01 Kz33 161.229 161.223 161.229 161.222 161.222 161.221 161.221 161.221	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05 160.96 160.90 160.85 0.441 4 0.25 Kz49 161.29 161.705 161.429 161.310 161.258 161.222 161.121 161.072	0.25 Kx50 160.98 161.05 161.13 161.17 161.22 161.47 161.73 161.84 161.88 161.88 161.88 161.88 161.88 161.88 161.88 161.83 161.32 167.824 163.367 162.138 161.606 161.378 161.222 160.817 160.646
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Min: Range: Notes Layer K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: 10 Max: 10 10 10 10 10 10 10 10 10 10	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22 199.5 Vertical Con 3 4.45 K215 161.603 161.312 161.200 161.229 161.222 161.204 161.194 161.192	3 80.0 K×16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0 nductivity Z 3 8.00 Kz16 161.255 161.297 161.252 161.252 161.227 161.222 161.207 161.200 161.200 161.197	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26 179.77 191.67 202.64 395.64 157.16 238.5 ones 3 0.61 Kz17 164.622 161.958 161.523 161.349 161.274 161.222 161.079 160.0988	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.24 161.65 161.91 161.24 161.65 161.91 162.23 171.07 160.91 10.154 3 0.50 K222 163.471 161.683 161.408 161.300 161.254 161.325 161.305 161.254 161.305 161.305 161.254 161.305 161.254 161.305 161.305 161.305 161.305 161.305 161.408 161.300 161.254 161.305 161.305 161.305 161.305 161.408 161.300 161.254 161.305 161.305 161.305 161.408 161.305 161.408 161.305 161.408 161.305 161.408 161.305 161.408 161.305 161.408 161.408 161.408 161.305 161.408 161.408 161.408 161.305 161.408 161.408 161.408 161.305 161.408 161.408 161.408 161.408 161.408 161.408 161.408 161.254 161.254 161.254 161.305 161.254 161.305 161.305 161.254 161.305	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22 1,213.0 3 4.45 Kz27 163.266 161.566 161.382 161.222 160.889 160.834 160.768	Kx28 179.79 165.69 161.80 161.22 161.26 163.80 161.22 161.22 161.22 171.54 179.79 161.22 18.573 OU2B 3 2.80 K228 161.520 161.319 161.275 161.224 161.225 161.224 161.227 161.227 161.227 161.221 161.225 161.221 161.222 161.225 161.227 161.227 161.227 161.126	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.54 165.67 168.79 171.03 172.72 234.96 161.22 73.74 OU2B 3 2.350 K229 162.468 161.482 161.327 161.267 161.267 161.267 161.267 161.250 161.123 161.150 161.142	3.04 Kx36 162.67 161.95 161.43 161.32 161.22 160.82 160.46 160.28 160.18 160.12 162.67 160.12 2.552 OU2B 3 0.30 Kz36 161.187 161.205 161.215 161.222 161.267	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8 3 3 3.78 Kz37 161.814 161.367 161.283 161.248 161.233 161.222 161.192 161.177 161.172	14.00 Kx38 171.75 166.70 164.19 162.61 161.23 171.42 187.38 205.38 223.78 161.22 62.559 OU2B 3 161.829 161.829 161.829 161.829 161.829 161.829 161.829 161.220 161.221 161.222 161.224 161.225 161.224 161.225 161.226 161.226 161.226 161.226 161.226 161.226 161.226	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.16 161.15 0.50 Kz39 161.228 161.228 161.223 161.223 161.222 161.222 161.222 161.221 161.221	80.0 Kx40 166.17 163.61 162.45 161.47 161.47 161.47 161.47 161.47 161.47 160.45 160.03 159.79 166.17 159.79 0U28 3 8.00 K240 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221	80.0 Kx41 161.32 161.25 161.23 161.23 161.23 161.24 161.25 161.20 161.12 161.18 161.18 161.17 161.32 161.17 0.144 OU28 3 8.00 Kz41 161.225 161.225 161.225 161.223 161.224 161.225 161.225 161.224 161.225 161.221 161.221	80.0 Kx42 226.11 181.00 167.57 162.78 161.20 166.26 176.36 188.59 226.11 161.22 64.89 226.11 161.22 64.89 3 8.00 Kz42 161.023 161.21 161.221 161.221 161.231 161.238 161.233 161.233 161.233 161.233 161.233 161.234 161.235	0.10 Kx46 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.68 163.80 159.76 4.042 3 0.01 Kz46 171.362 166.218 163.772 162.395 161.718 161.222 159.774 159.110 158.921	14.00 Kx51 163.14 161.63 161.25 161.17 161.21 161.22 163.44 164.74 165.87 166.90 161.15 5.746 3 1.40 Kz51 161.281 161.281 161.281 161.281 161.281 161.233 161.176 161.171	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22 190.6 3 8.00 Kz52 164.603 162.428 161.780 161.471 161.325 161.222 160.915 160.755 160.701	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104 3 0.61 Kz53 163.215 161.341 161.268 161.222 161.176 161.159 161.153	6.08 Kx54 183.87 168.58 164.72 162.81 161.22 164.93 172.70 189.01 160.12 28.888 OU2B 3 0.61 Kz54 163.600 161.734 161.429 161.22 163.600 161.734 161.221 161.261 161.262 161.262 161.261 161.262 161.262 161.263 161.264 161.265 161.265 161.266 161.066	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.97 179.33 245.30 161.22 84.07 OU2B 3 4.40 K255 161.233 161.224 161.225 161.226 161.222 161.224 161.225 161.224 161.225 161.226 161.221 161.222 161.224 161.225 161.224 161.225 161.215 161.214	3 24.96 Kx56 343.96 241.10 193.93 171.38 163.73 161.22 201.56 333.87 531.62 599.42 161.22 438.2 0U2B 3 2.500 kz56 163.586 160.801 160.737 160.918 161.929 161.925 161.925	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 161.22 187.65 212.14 232.83 250.20 161.22 88.97 3 161.235 161.226 161.223 161.224 161.223 161.224 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 332.91 366.81 366.81 161.22 205.6 Xz58 162.480 161.551 161.428 161.283 161.222 161.126 161.216 161.116 161.116	12.46 Kx59 208.09 167.01 161.69 160.61 161.22 169.68 187.46 200.82 210.85 218.66 160.49 58.18 3 12.25 Kz59 160.409 160.857 161.062 161.157 161.213 161.513	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08 162.79 163.57 211.84 161.01 50.83 OU2B 3 162.538 161.626 161.409 161.307 161.222 161.032 161.032 161.032	0.10 Kx18 161.85 161.72 161.83 161.33 161.22 160.65 160.10 160.64 161.85 160.15 160.64 161.85 160.01 .745 OU28 4 0.01 Kz18 162.580 162.600 161.611 161.300 161.22 163.521 160.580 162.580 162.690 161.611 161.390 161.221 160.901 161.991 163.803	0.50 Kx32 161.21 161.22 161.22 161.22 161.23 161.23 161.17 161.12 161.7 161.23 161.07 0.152 4 0.05 Kz32 163.706 161.547 161.230 161.230 161.220 161.222 161.232	0.10 Kx33 161.96 161.78 161.61 161.34 161.22 160.57 159.64 159.15 159.16 159.16 159.01 2.955 OU28 4 0.01 Kz33 161.299 161.223 161.229 161.222 161.222 161.222 161.211 161.1199 161.1194	2.50 Kx49 161.29 161.26 161.23 161.23 161.24 161.25 161.26 161.27 161.29 160.85 0.441 4 0.25 Kz49 161.705 161.429 161.705 161.293 161.705 161.293 161.705 161.222 161.222 161.072 161.072 161.057	0.25 Kx50 160.89 161.05 161.13 161.17 161.22 161.47 161.73 161.84 161.88 161.88 161.88 161.88 161.88 163.89 0.988 4 0.03 K250 167.824 163.367 162.138 161.606 161.378 161.222 160.817 160.646 160.596
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Min: Range: Notes Layer K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 4 6 8 10 Max: Range: 10 10 10 10 10 10 10 10 10 10	3 44.52 Kx15 260.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 194.11 200.48 360.72 161.22 199.5 Vertical Corr 3 4.45 K215 161.603 161.312 161.603 161.312 161.238 161.229 161.222 161.204 161.204	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0 Multiple and a second s	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26 179.77 191.67 202.64 395.64 157.16 238.5 ones 3 0.61 Kz17 164.622 161.958 161.523 161.224 161.274 161.222 161.079 161.009 160.988	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.24 161.65 161.91 161.24 161.65 161.91 162.23 171.07 160.91 10.154 3 0.50 K222 163.471 163.83 161.833 161.833 161.833 161.254 161.254 161.95 161.081 161.055	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22 1,213.0 3 4.45 Kz27 163.266 161.382 161.566 161.382 161.221 161.222 160.989 160.834 160.768 160.731	Kx28 179.79 165.69 161.08 161.50 161.22 161.26 163.80 166.62 169.22 171.54 179.79 161.22 18.573 OU2B 3 2.80 K228 161.201 161.319 161.250 161.248 161.251 161.222 161.217 161.221 161.222 161.216 161.221	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.54 165.67 168.79 171.03 172.72 234.96 161.22 73.74 OU2B 3 2.50 K229 162.468 161.482 161.327 161.267 161.267 161.267 161.267 161.250 161.123 161.150 161.142	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.82 160.46 160.28 160.12 162.67 160.12 2.552 OU2B 3 0.30 Kz36 161.122 161.205 161.225 161.222 161.262 161.268	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8 3 3 3.78 Kz37 161.814 161.814 161.233 161.248 161.233 161.248 161.222 161.172 161.177 161.172	14.00 Kx38 171.75 166.70 164.19 162.61 161.22 161.23 171.42 187.38 205.38 223.78 161.22 205.38 223.78 161.22 0U2B 3 1.40 Kz38 161.829 0L28 161.420 161.339 161.221 161.222 161.221 161.222 161.221 161.222 161.221 161.222 161.223 161.224 161.225 161.221	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.16 161.16 161.15 0.156 3 0.50 Kz39 161.228 161.223 161.223 161.223 161.222 161.222 161.221 161.221	80.0 Kx40 166.17 163.61 162.45 161.47 161.47 161.47 161.47 161.47 161.47 160.45 160.03 159.79 159.79 0U2B 3 8.00 K240 161.221 161.223 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221	80.0 Kx41 161.32 161.23 161.23 161.23 161.23 161.24 161.25 161.20 161.21 161.22 161.23 161.24 161.18 161.17 0.144 OU28 3 8.00 Kz41 161.225 161.223 161.223 161.223 161.224 161.221 161.221	80.0 Kx42 226.11 181.00 167.57 162.78 166.26 176.36 188.29 186.30 188.59 226.11 161.22 64.89 3 8.00 Kz42 161.069 161.213 161.221 161.231 161.231 161.239 161.240	0.10 Kx46 159.76 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.80 159.76 4.042 3 0.01 Kz46 171.362 166.218 163.772 162.395 161.718 162.221 159.774 158.921 158.836	14.00 Kx51 163.14 161.63 161.25 161.17 161.21 161.22 163.44 164.74 165.87 166.90 161.15 5.746 3 1.40 Kz51 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.176 161.171 161.168	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22 190.6 3 8.00 Kz52 164.603 162.428 161.780 161.780 161.782 160.915 160.755	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104 3 0.61 Kz53 163.215 161.341 161.268 161.240 161.222 161.176 161.159	6.08 6.08 Kx54 183.87 168.58 164.72 162.81 161.22 164.93 172.70 181.00 189.01 160.12 28.888 OU2B 3 0.61 Kz54 163.600 161.227 161.429 161.221 161.222 161.221 161.222 161.225 161.221 161.222 161.221 161.222 161.223 161.224 161.225 161.225 161.226 161.026 161.026 161.026	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 176.97 179.33 245.30 161.22 84.07 OU2B 3 4.40 K255 161.233 161.226 161.221 161.222 161.223 161.224 161.221 161.221 161.224 161.221 161.214 161.214	3 24.96 Kx56 343.96 241.10 193.93 171.38 163.73 161.22 201.56 333.87 531.62 599.42 161.22 438.2 0U2B 3 2.500 kz56 163.586 160.801 160.737 160.918 161.929 161.925 161.945 161.949 161.945 161.949 162.651 162.955	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 161.22 162.82 187.65 212.14 232.83 250.20 161.22 88.97 3 1.25 Kz57 161.324 161.223 161.223 161.224 161.223 161.225 161.224 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.223 161.222 161.224 161.222 161.225 161.222 161.222 161.222 161.223 161.222 161.224 161.222 161.225 161.222 161.222 161.223	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81 161.22 205.6 3 1.25 Kz58 162.480 161.251 161.364 161.221 161.116 161.121 161.111 161.103 161.03 161.03	12.46 Kx59 208.09 167.01 161.69 160.61 161.22 169.68 187.46 200.82 210.85 218.66 160.49 58.18 3 1.25 Kz59 158.792 160.402 160.4357 161.062 161.157 161.546 161.546 161.546 161.546	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.27 161.45 162.08 162.79 163.57 211.84 161.01 50.83 OU2B 3 1.25 Kz60 162.538 161.626 161.409 161.307 161.258 161.222 161.107 161.281 161.2032	0.10 Kx18 161.85 161.72 161.58 161.33 161.22 160.65 160.10 160.15 160.64 161.85 160.10 1.745 0U2B 4 0.01 Kz18 163.521 162.580 162.009 161.611 161.390 161.991 161.991 163.803 165.825	0.50 Kx32 161.21 161.22 161.22 161.22 161.23 161.23 161.17 161.12 161.7 161.23 161.07 0.152 4 0.05 Kz32 163.706 161.547 161.230 161.230 161.220 161.222 161.232	0.10 Kx33 161.96 161.78 161.61 161.34 161.22 160.57 159.64 159.16 159.16 159.16 159.10 159.10 159.01 2.955 OU28 4 0.01 Kz33 161.299 161.223 161.222 161.221 161	2.50 Kx49 161.29 161.26 161.23 161.23 161.24 161.23 161.24 161.25 161.26 161.27 161.28 161.29 160.85 0.441 4 0.25 Kz49 162.993 161.429 161.310 161.258 161.221 161.057 161.057 161.048	0.25 Kx50 160.98 161.05 161.13 161.17 161.22 161.47 161.73 161.84 161.88 161.88 161.88 161.88 161.88 161.88 161.88 161.83 161.32 167.824 163.367 162.138 161.606 161.378 161.222 160.817 160.646
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Min: Range: Notes Layer K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Range: 10 10 10 10 10 10 10 10 10 10	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22 199.5 Vertical Corr 3 4.45 K215 161.603 161.312 161.603 161.312 161.238 161.229 161.222 161.204 161.194 161.192 161.189	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0 nductivity Z 3 8.00 Kz16 161.555 161.297 161.252 161.227 161.222 161.207 161.220 161.207 161.210 161.196 161.195	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26 179.77 191.67 202.64 395.64 157.16 238.5 ones 3 0.61 Kz17 164.622 161.958 161.523 161.349 161.274 161.272 161.079 161.009 160.988 160.976 160.969	5.00 Kx22 171.07 163.55 162.23 161.63 161.39 161.22 160.91 161.24 161.65 161.97 162.23 171.07 160.91 10.154 3 0.50 K222 163.471 161.683 161.408 161.254 161.225 161.254 161.055 161.057	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22 1,213.0 3 4.45 Kz27 163.266 161.926 161.566 161.566 161.522 160.989 160.834 160.731 160.707	Kx28 179.79 165.69 161.96 161.22 161.26 163.80 161.22 161.22 161.22 161.22 161.22 161.22 161.22 161.22 161.520 161.225 161.222 161.222 161.221 161.222 161.221 161.222 161.221 161.222 161.221 161.222 161.221 161.222 161.223 161.221 161.177 161.117 161.112	25.00 Kx29 234.96 179.25 167.86 163.56 162.03 161.54 165.67 168.79 171.03 172.72 234.96 161.22 73.74 OU2B 0 K229 162.468 161.327 161.240 161.227 161.240 161.221 161.136 161.136	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.82 160.46 160.28 160.18 160.12 2.552 OU2B 3 0.30 Kz36 161.122 161.205 161.205 161.222 161.247 161.268 161.268 161.270	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8 3 3.78 Kz37 161.814 161.367 161.833 161.248 161.248 161.233 161.222 161.172 161.170 161.169	14.00 Kx38 171.75 166.70 164.19 162.61 161.23 171.42 187.38 205.38 223.78 161.22 0U2B 3 1.40 Kz38 161.829 161.339 161.244 161.222 161.244 161.221 161.222 161.126 161.221 161.222 161.231 161.244 161.222 161.126 161.126 161.120	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.17 161.16 161.16 161.16 161.15 161.31 161.31 161.15 0.156 8 0.50 Kz39 161.228 161.223 161.223 161.222 161.222 161.221 161.221 161.221 161.221 161.221	80.0 Kx40 166.17 163.61 162.45 161.47 161.47 160.45 160.03 159.90 159.83 159.79 166.17 159.79 0U28 3 8.00 Kz40 161.221 161.223 161.223 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221	80.0 Kx41 161.32 161.23 161.23 161.23 161.23 161.23 161.24 161.25 161.27 161.28 161.19 161.18 161.17 161.32 161.17 0.144 OU2B 3 8.00 Kz41 161.223 161.224 161.223 161.223 161.224 161.223 161.224 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.220 161.220	80.0 Kx42 226.11 181.00 167.57 162.78 161.50 166.26 176.36 182.29 186.03 188.59 226.11 161.22 64.89 3 8.00 Kz42 161.069 161.178 161.219 161.221 161.231 161.233 161.234 161.235 161.240 161.240	0.10 Kx46 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.68 163.80 159.76 4.042 3 0.01 Kz46 171.362 162.395 162.395 161.718 161.222 159.774 159.110 158.921 158.789	14.00 Kx51 163.14 161.63 161.25 161.15 161.22 161.22 161.21 165.87 166.90 161.15 5.746 3 1.40 Kz51 161.288 161.281 161.281 161.222 161.233 161.221 161.233 161.221 161.171 161.688 161.2171 161.263 161.276 161.171 161.168 161.167	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22 190.6 3 8.00 Kz52 164.603 162.428 164.603 162.428 161.780 161.471 161.325 160.755 160.755 160.701 160.674 160.657	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104 3 0.61 Kz53 163.215 161.251 161.341 161.268 161.240 161.222 161.155 161.155 161.155 161.155 161.155 161.151 161.149	6.08 Kx54 183.87 168.58 164.72 162.81 161.22 160.12 164.93 172.70 181.00 189.01 160.12 28.88 OU2B 3 0.61 Kz54 163.600 161.734 161.257 161.257 161.257 161.257 161.266 161.056 161.056 161.056	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.97 179.33 245.30 161.22 84.07 OU2B 3 4.40 K255 161.233 161.224 161.225 161.224 161.225 161.215 161.214 161.215 161.214 161.215	3 24.96 Kx56 343.96 241.10 193.93 171.38 163.73 161.22 201.66 333.87 599.42 161.22 438.2 OU2B 3 160.931 160.737 160.737 160.731 160.732 161.222 161.236 160.737 160.737 161.221 161.222 161.221 161.222 161.236 161.231 161.231 161.231 161.231 161.231 161.2451 162.955 163.341	12.46 Kx57 218.07 191.59 176.45 161.62 187.65 212.14 232.83 250.20 161.22 88.97 3 1.25 Kz57 161.324 161.223	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 167.58 220.40 275.06 323.91 366.81 161.22 205.6 3 1.25 Kz58 162.480 161.551 161.223 161.248 161.2248 161.2248 161.248 161.221 161.116 161.203 161.204 161.203 161.204 161.203 161.204 161.003 161.003 161.003 161.003 161.003 161.003 161.003 161.003	12.46 Kx59 208.09 167.01 161.69 160.49 160.61 161.22 169.68 187.46 200.82 210.85 218.66 160.49 58.18 3 1.25 K259 160.409 160.409 160.409 160.409 161.057 161.222 161.414 161.513 161.524 161.562 161.573	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08 162.79 163.57 211.84 161.01 50.83 OU2B 3 1.25 Kz60 162.538 161.626 161.409 161.327 161.222 161.107 161.032 161.002 160.985 160.973	0.10 Kx18 161.85 161.72 161.58 161.31 161.22 160.65 160.13 160.15 160.64 161.85 160.10 1.745 OU2B 4 0.01 Kz18 162.500 161.61.30 162.009 161.321 163.321 162.300 161.222 160.901 163.521 162.803 161.391 163.521 163.803 165.825 167.880	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.23 161.17 161.12 161.07 161.23 161.07 0.152 161.23 161.07 0.152 163.706 161.547 161.286 161.230 161.222 161.274 161.339 161.368 161.387 161.387 161.386	0.10 Kx33 161.96 161.78 161.61 161.34 161.75 159.64 159.15 159.01 159.01 2.955 OU28 4 0.01 Kz33 161.229 161.231 161.220 161.221 161.221 161.222 161.221 161.221 161.221 161.221 161.223 161.227 161.221 161.221 161.211 161.227 161.221 161.211 161.227 161.211 161.194 161.194 161.187	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05 160.96 160.90 160.85 161.29 160.85 0.441 4 0.25 Kz49 161.29 161.429 161.429 161.429 161.429 161.221 161.221 161.221 161.221 161.057 161.048 161.042	0.25 Kx50 160.98 161.05 161.13 161.17 161.22 161.47 161.73 161.84 161.88 161.88 161.88 161.88 161.88 161.88 161.89 0.988 4 0.03 K250 167.824 163.367 162.138 161.222 160.817 160.646 160.596 160.573 160.561
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Min: Range: Notes Layer K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Notes 1 2 4 6 8 10 Max: 10 10 10 10 10 10 10 10 10 10	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22 199.5 Vertical Corr 3 4.45 K215 161.603 161.312 161.603 161.312 161.238 161.229 161.222 161.204 161.194 161.192 161.189	3 80.0 Kx16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0 Multiple and a second s	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26 179.77 191.67 202.64 395.64 157.16 238.5 ones 3 0.61 Kz17 164.622 161.958 161.523 161.274 161.222 161.009 160.988 160.976	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.24 161.65 161.91 161.24 161.65 161.91 162.23 171.07 160.91 10.154 3 0.50 K222 163.471 163.83 161.833 161.833 161.833 161.254 161.254 161.95 161.081 161.055	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22 1,213.0 3 4.45 Kz27 163.266 161.382 161.566 161.382 161.221 161.222 160.989 160.834 160.768 160.731	Kx28 179.79 165.69 161.08 161.50 161.22 161.26 163.80 166.62 169.22 171.54 179.79 161.22 18.573 OU2B 3 2.80 K228 161.201 161.319 161.275 161.248 161.221 161.222 161.217 161.221 161.222 161.232 161.248 161.222 161.177 161.126 161.117	25.00 kx29 234.96 179.25 167.86 163.56 162.03 161.54 165.67 168.79 171.03 172.72 234.96 161.22 73.74 OU2B 002B 162.468 161.327 161.227 161.240 161.222 161.73 161.153	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.82 160.46 160.28 160.12 162.67 160.12 2.552 OU2B 3 0.30 Kz36 161.122 161.205 161.225 161.222 161.262 161.268	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8 3 3 3.78 Kz37 161.814 161.814 161.233 161.248 161.233 161.248 161.222 161.172 161.177 161.172	14.00 Kx38 171.75 166.70 164.19 162.61 161.22 161.23 171.42 187.38 205.38 223.78 161.22 205.38 223.78 161.22 0U2B 3 1.40 Kz38 161.829 0L28 161.420 161.339 161.221 161.222 161.221 161.222 161.221 161.222 161.221 161.222 161.223 161.224 161.225 161.221	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.16 161.15 0.156 3 0.50 Kz39 161.228 161.223 161.223 161.222 161.222 161.221 161.221 161.221 161.221	80.0 Kx40 166.17 163.61 162.45 161.47 161.47 161.47 161.47 161.47 161.47 160.45 160.03 159.79 159.79 0U2B 3 8.00 K240 161.221 161.223 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221	80.0 Kx41 161.32 161.23 161.23 161.23 161.23 161.23 161.24 161.25 161.27 161.28 161.19 161.18 161.17 161.32 161.17 0.144 OU2B 3 8.00 Kz41 161.223 161.224 161.223 161.223 161.224 161.223 161.224 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.220 161.220	80.0 Kx42 226.11 181.00 167.57 162.78 166.26 176.36 188.29 186.30 188.59 226.11 161.22 64.89 3 8.00 Kz42 161.069 161.213 161.221 161.231 161.231 161.239 161.240	0.10 Kx46 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.80 163.80 159.76 4.042 3 0.01 Kz46 171.362 162.28 163.772 162.395 161.718 163.772 159.774 159.921 158.921 158.836	14.00 Kx51 163.14 161.63 161.25 161.17 161.21 161.22 163.44 164.74 165.87 166.90 161.15 5.746 3 1.40 Kz51 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.176 161.171 161.168	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22 190.6 3 8.00 Kz52 164.603 162.428 161.780 161.471 161.325 161.222 160.915 160.755 160.701 160.674	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104 3 0.61 Kz53 163.215 161.351 161.351 161.222 161.75 161.222 161.155 161.155 161.155	6.08 6.08 Kx54 183.87 168.58 164.72 162.81 161.22 164.93 172.70 181.00 189.01 160.12 28.888 OU2B 3 0.61 Kz54 163.600 161.227 161.429 161.221 161.222 161.221 161.222 161.225 161.221 161.222 161.221 161.222 161.223 161.224 161.225 161.225 161.226 161.026 161.026 161.026	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 176.97 176.97 179.33 245.30 161.22 84.07 OU2B 3 4.40 K255 161.233 161.226 161.221 161.222 161.224 161.221 161.218 161.214 161.214	3 24.96 Kx56 241.10 193.93 171.38 163.73 161.22 201.56 333.87 531.62 599.42 161.22 438.2 0U2B 3 2.50 K256 163.586 160.801 163.586 163.586 163.586 163.586 163.586 163.585 163.585 163.585 163.585 163.585 163.585 163.585 163.585 163.585 163.585 163.595 163.595 163.201	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 161.22 162.82 187.65 212.14 232.83 250.20 161.22 88.97 3 1.25 Kz57 161.324 161.223 161.223 161.224 161.223 161.225 161.224 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.222 161.223 161.222 161.224 161.222 161.225 161.222 161.222 161.222 161.223 161.222 161.224 161.222 161.225 161.222 161.222 161.223	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81 161.22 205.6 3 1.25 Kz58 162.480 161.251 161.364 161.221 161.116 161.121 161.111 161.103 161.03 161.03	12.46 Kx59 208.09 167.01 161.69 160.61 161.22 169.68 187.46 200.82 210.85 218.66 160.49 58.18 3 1.25 Kz59 158.792 160.402 160.4357 161.062 161.157 161.546 161.546 161.546 161.546	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08 162.79 163.57 211.84 161.01 50.83 OU2B 3 162.538 161.262 161.409 161.253 161.254 161.252 161.253 161.254 161.255 161.252 161.253 161.254 161.255 161.256 161.257 161.032 161.032 161.032 161.032 161.032 161.032	0.10 Kx18 161.85 161.72 161.58 161.33 161.22 160.65 160.10 160.15 160.64 161.85 160.10 1.745 0U2B 4 0.01 Kz18 163.521 162.580 162.009 161.611 161.390 161.991 161.991 163.803 165.825	0.50 Kx32 161.21 161.22 161.22 161.22 161.23 161.23 161.17 161.12 161.23 161.23 161.23 161.07 0.152 Kz32 161.23 161.23 161.23 161.23 161.23 161.23 161.23 161.23 161.23 161.23 161.337 161.387 161.387 161.396 163.71	0.10 Kx33 161.96 161.78 161.61 161.34 161.75 159.64 159.15 159.01 159.01 2.955 OU28 4 0.01 Kz33 161.229 161.231 161.220 161.221 161.221 161.222 161.221 161.221 161.221 161.221 161.223 161.227 161.221 161.221 161.211 161.227 161.221 161.211 161.227 161.211 161.194 161.194 161.187	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05 160.96 160.90 160.85 161.29 160.85 0.441 4 0.25 Kz49 161.29 161.429 161.429 161.429 161.429 161.221 161.221 161.221 161.221 161.057 161.048 161.042	0.25 Kx50 160.88 161.05 161.13 161.17 161.22 161.47 161.23 161.84 161.88 161.88 161.88 161.88 161.88 161.88 163.89 0.988 4 0.03 Kz50 167.824 163.367 163.367 162.138 161.606 161.378 161.222 160.817 160.646 160.596 160.573
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Notes Layer K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Notes Layer K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 10 Max: Notes Notes 10 Multiplier 0.1 0.7 0.85 10 Max: Notes 10 Multiplier 0.1 0.7 0.85 10 Max: Notes 10 Multiplier 0.1 0.3 0.5 0.7 0.85 10 Multiplier 0.1 0.3 0.5 0.7 0.85 10 Multiplier 0.1 0.3 0.5 0.7 0.85 10 Multiplier 0.1 0.3 0.5 0.7 0.85 10 Multiplier 0.1 0.3 0.5 0.7 0.85 10 Multiplier 0.1 0.3 0.5 0.7 0.85 10 Multiplier 0.1 0.3 0.5 0.7 0.85 10 A Max: Multiplier 0.1 0.3 0.5 0.7 0.85 10 A Max: Multiplier 10 2 4 6 8 10 Max: Multiplier 10 2 4 6 8 10 Max: Multiplier 10 2 4 6 8 10 Max: Max: Multiplier 10 2 4 6 8 10 Max: Max: Multiplier 10 2 4 6 8 10 Max: Max: Multiplier 10 2 4 6 8 10 10 10 10 10 10 10 10 10 10	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22 199.5 Vertical Com 3 4.45 Kz15 161.603 161.222 161.222 161.222 161.222 161.222 161.222 161.224 161.225 161.225 161.225 161.225 161.225 161.225 161.225 161.225 161.225 161.226 161.226 161.226 161.226 161.226 161.226 161.227 161.227 161.227 161.227 161.227 161.227 161.226 161.227 161.227 161.227 161.227 161.227 161.227 161.227 161.227 161.227 161.226 161.227 161.204 161.227 161.204 161.194 161.194 161.199 161.600 161.194 161.194 161.600 161.194 161.600 161.194 161.600 161.195 161.600 161.194 161.195 161.600 161.600 161.600 161.600 161.600 161.600 161.600 161.600 161.600	3 80.0 K×16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0 nductivity Z 3 8.00 K216 161.555 161.297 161.555 161.227 161.222 161.207 161.207 161.200 161.196 161.195 161.55	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26 179.77 191.67 202.64 395.64 157.16 238.5 ones 3 0.61 Kz17 164.622 161.958 161.523 161.349 161.274 161.222 161.079 161.009 160.988 160.976 160.969 164.62	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.24 161.65 161.91 161.24 161.65 161.91 162.23 171.07 160.91 10.154 3 0.50 K222 163.471 161.683 161.408 161.300 161.254 161.300 161.254 161.305 161.075 161.075 161.071 163.47	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22 1,213.0 3 4.45 Kz27 163.266 161.382 161.566 161.382 161.566 161.382 161.221 160.834 160.731 160.707 163.27	Kx28 179.79 165.69 163.08 161.96 161.22 161.26 163.80 166.62 169.22 171.54 179.79 161.22 18.573 OU2B 3 2.80 K228 161.275 161.248 161.275 161.221 161.177 161.122 161.177 161.121 161.522 161.117 161.212 161.111 0.408	25.00 kx29 234.96 179.25 167.86 163.56 162.03 161.22 161.54 165.67 168.79 171.03 172.72 234.96 161.22 73.74 OU2B 3 2.50 k229 162.468 161.422 161.327 161.240 161.222 161.73 161.142 161.138 161.136 162.47 161.144 1.332	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.28 160.46 160.28 160.46 160.28 160.12 162.67 160.12 2.552 OU2B 3 0.30 Kz36 161.222 161.205 161.225 161.225 161.225 161.247 161.266 161.268 161.27 161.27 161.27 161.27 161.22 161.27 161.22 0.148	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8 3 3 3.78 Kz37 161.814 161.283 161.248 161.233 161.222 161.172 161.177 161.811 161.170 161.811 161.177 0.646	14.00 Kx38 171.75 166.70 164.19 162.61 161.23 171.42 187.38 205.38 223.78 161.22 62.559 0U2B 3 1.40 K238 161.829 161.460 161.339 161.221 161.422 161.244 161.221 161.222 161.244 161.221 161.222 161.224 161.225 161.244 161.221 161.222 161.120 161.121 161.122 161.121 161.122 161.123 161.124 161.125 161.126 161.127 161.128 161.120	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.16 161.15 161.31 161.15 0.156 3 0.50 Kz39 161.223 161.223 161.223 161.222 161.221 161.221 161.221 161.221 161.222 161.222 161.222 161.222 161.221 161.221 161.221 161.222 161.222 161.222 161.221 161.221 161.221 161.221 161.221 161.222 161.222 161.222 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.222 161.222 161.221 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.225 161.23 161.225 161.23 161.225 161.23 161.25 161.25 161.25 161.25 161.25	80.0 Kx40 166.17 163.61 162.45 161.47 161.21 160.45 160.03 159.83 159.79 166.17 159.79 6.379 0U28 3 8.00 K240 161.221 161.223 161.221	80.0 Kx41 161.32 161.25 161.23 161.23 161.23 161.23 161.23 161.24 161.25 161.17 161.32 161.17 161.32 161.17 0.144 OU28 3 8.00 Kz41 161.225 161.224 161.225 161.225 161.221 161.222 161.221 161.221 161.220 161.220 161.220 161.220 161.220 161.220 161.220 161.22 0.016	80.0 Kx42 226.11 181.00 167.57 162.78 166.26 176.36 188.59 226.11 161.22 188.59 226.11 161.22 64.89 2 161.178 161.203 161.21 161.22 161.23 161.24 161.23 161.24	0.10 Kx46 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.68 163.80 159.76 4.042 3 0.01 Kz46 171.362 166.218 163.772 162.395 161.222 159.774 159.110 158.921 158.836 158.789 171.36	14.00 Kx51 163.14 161.63 161.25 161.17 161.21 161.22 163.44 164.74 165.87 166.90 161.15 5.746 3 1.40 Kz51 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.281 161.283 161.281 161.283 161.291 161.176 161.167 161.69	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22 190.6 3 8.00 kz52 164.603 162.428 164.603 162.428 161.780 164.780 161.780 161.782 161.780 161.785 160.755 160.701 160.674 160.657 164.60	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104 3 0.61 Kz53 163.215 161.240 161.222 161.176 161.159 161.153 161.151 161.149 163.21	6.08 6.08 Kx54 183.87 168.58 164.72 162.81 161.22 164.93 172.70 189.01 160.12 28.88 0U2B 3 0.61 Kz54 163.600 161.221 161.429 161.257 161.257 161.261 161.056 161.056 161.056 163.600 161.055 2.547	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.30 245.30 161.22 84.07 0U2B 3 4.40 K255 161.233 161.224 161.225 161.224 161.224 161.225 161.218 161.214 161.214 161.214 161.215 161.214 161.215 161.214 161.215 161.214 161.215 161.216 161.217 161.218 161.214 161.215 161.216 161.217 161.218 161.219	3 24.96 Kx56 241.10 193.93 171.38 163.73 161.22 201.56 333.87 551.62 599.42 161.22 438.2 OU2B 3 161.63.586 163.586 163.586 163.586 160.737 161.622 161.723 161.221 163.586 161.221 162.951 163.201 163.341 162.955 163.3201 163.341 163.59 160.74 2.849	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 161.22 162.82 187.65 212.14 232.83 250.20 161.22 88.97 3 125 Kz57 161.324 161.223 161.223 161.224 161.223 161.225 161.224 161.224 161.223 161.222 161.223 161.222 161.223 161.223 161.223 161.224 161.223 161.225 161.223 161.224 161.223 161.225 161.223 161.223 161.223 161.223 161.223 161.224 161.223 161.225 161.223 161.223 161.223 161.224 161.224	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81 161.22 205.6 X258 162.480 161.221 163.41 162.483 161.224 161.248 161.225 161.248 161.221 161.126 161.293 161.103 161.098 162.48	12.46 Kx59 208.09 167.01 161.69 160.61 161.22 169.68 187.46 200.82 210.85 218.66 160.49 58.18 3 1.25 K259 160.409 160.409 160.401 161.57 161.57 161.57 161.57 158.79 2161.57 158.79 261.573 161.57 158.79 2.781	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08 162.79 163.57 211.84 161.01 50.83 OU2B 3 162.538 161.626 161.409 161.222 161.223 161.224 161.025 161.025 161.026 161.221 161.022 161.023 161.024 160.985 160.973 162.54 160.97 1.564	0.10 Kx18 161.85 161.72 161.58 161.33 161.22 160.65 160.10 160.15 160.64 161.46 161.85 160.10 1.745 OU28 4 0.01 Kz18 163.521 162.580 163.803 165.825 167.888 160.91 6.974	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.23 161.21 161.23 161.12 161.12 161.23 161.23 161.07 0.152 4 0.05 Kz32 163.706 161.230 161.230 161.230 161.220 161.220 161.221 161.339 161.387 161.387 161.396 163.71 161.22 2.486	0.10 Kx33 161.96 161.78 161.61 161.34 161.22 160.57 159.64 159.16 159.16 159.16 159.16 0.12 2.955 OU28 4 0.01 Kz33 161.293 161.293 161.221 161.222 161.221 161.223 161.221 161.223 161.221 161.221 161.221 161.194 161.194 161.190 161.191 161.301 161.192 161.301 161.191 161.192 161.191 161.191	2.50 Kx49 161.29 161.24 161.23 161.24 161.23 161.24 161.23 161.24 161.6 161.05 160.96 160.90 160.85 0.441 4 0.25 Kz49 161.29 161.310 161.29 161.310 161.222 161.310 161.222 161.057 161.048 161.042 162.99	0.25 Kx50 160.89 161.05 161.13 161.17 161.22 161.47 161.73 161.84 161.88 161.88 161.88 161.88 161.88 163.89 0.988 4 0.03 K250 167.824 163.367 162.138 161.606 161.378 161.222 160.573 160.561 167.82
K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Notes Layer K: Ft/D Multiplier 0.1 0.3 0.5 0.7 0.85 1 2 4 6 8 10 Max: Notes 1 2 4 6 8 10 Max: Notes 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	3 44.52 Kx15 360.72 213.84 180.51 167.96 163.54 161.22 162.48 175.56 186.06 194.11 200.48 360.72 161.22 199.5 Vertical Com 3 4.45 Kz15 161.603 161.222 161.222 161.222 161.222 161.222 161.222 161.224 161.225 161.225 161.225 161.225 161.225 161.225 161.225 161.225 161.225 161.226 161.226 161.226 161.226 161.226 161.226 161.227 161.227 161.227 161.227 161.227 161.227 161.226 161.227 161.227 161.227 161.227 161.227 161.227 161.227 161.227 161.227 161.226 161.227 161.204 161.227 161.204 161.194 161.194 161.199 161.600 161.194 161.194 161.600 161.194 161.600 161.194 161.600 161.195 161.600 161.194 161.195 161.600 161.600 161.600 161.600 161.600 161.600 161.600 161.600 161.600	3 80.0 K×16 875.24 377.85 233.06 180.65 165.78 161.22 202.77 290.93 342.79 376.01 399.21 875.24 161.22 714.0 Multiple for the second	3 6.08 Kx17 395.64 217.74 183.14 169.74 164.47 161.22 157.16 167.26 179.77 191.67 202.64 395.64 157.16 238.5 ones 3 0.61 Kz17 164.622 161.958 161.223 161.274 161.272 161.079 160.988 160.976 160.969 164.62 160.976 164.62 160.976	5.00 Kx22 171.07 163.55 162.23 161.65 161.39 161.24 161.65 161.91 162.23 171.07 160.91 10.154 3 0.50 K222 163.471 161.254 161.254 161.254 161.254 161.254 161.075 163.477 163.47 161.07	44.52 Kx27 1,374.21 439.83 250.51 187.26 168.46 161.22 199.97 322.46 421.79 501.10 566.07 1,374.21 161.22 1,213.0 3 Kz27 163.266 161.382 161.566 161.382 161.221 160.834 160.731 160.707 163.27 160.71	Kx28 179.79 165.69 161.308 161.90 161.22 161.26 163.80 166.21 161.22 171.54 179.79 161.22 18.573 OU2B 3 2.80 K228 161.221 161.319 161.225 161.221 161.222 161.223 161.221 161.122 161.117 161.112 161.522 161.112	25.00 kx29 234.96 179.25 167.86 163.56 162.03 161.54 165.67 168.79 171.03 172.72 234.96 161.22 73.74 OU2B 0 161.22 161.42 161.327 161.240 161.222 161.138 161.136 162.47 161.14	3.04 Kx36 162.67 161.95 161.63 161.43 161.32 160.82 160.46 160.28 160.18 160.12 162.67 162.67 160.12 2.552 OU2B 3 0.30 Kz36 161.122 161.225 161.225 161.222 161.265 161.262 161.268 161.270 161.27 161.27	37.84 Kx37 439.99 261.86 203.08 176.77 166.67 161.22 170.34 230.61 284.44 327.25 361.33 439.99 161.22 278.8 3 3 3.78 Kz37 161.814 161.283 161.248 161.233 161.222 161.172 161.177 161.811 161.170 161.811 161.177 0.646	14.00 Kx38 171.75 166.70 164.19 162.61 161.23 171.42 187.38 205.38 223.78 161.22 62.559 OU2B 3 161.829 161.829 161.829 161.829 161.829 161.829 161.221 161.222 161.224 161.225 161.226 161.221 161.222 161.224 161.225 161.226 161.227 161.228 161.221 161.221 161.221 161.221 161.222 161.221 161.221 161.221 161.233 161.241 161.255	5.00 Kx39 161.31 161.27 161.25 161.24 161.23 161.22 161.19 161.17 161.16 161.16 161.15 161.31 161.15 0.156 3 0.50 Kz39 161.223 161.223 161.223 161.222 161.221 161.221 161.221 161.221 161.222 161.222 161.222 161.222 161.221 161.221 161.221 161.222 161.222 161.222 161.221 161.221 161.221 161.221 161.221 161.222 161.222 161.222 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.222 161.222 161.221 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.222 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.223 161.225 161.23 161.225 161.23 161.225 161.23 161.25 161.25 161.25 161.25 161.25	80.0 Kx40 166.17 163.61 162.45 161.47 161.47 161.47 161.47 161.47 161.47 160.45 160.03 159.90 159.83 159.79 0U28 3 8.00 K240 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.224 161.221 161.221 161.221 161.224 161.221 161.224 161.224 161.224 161.224 161.224 161.224	80.0 Kx41 161.32 161.25 161.23 161.23 161.24 161.27 161.28 161.29 161.20 161.19 161.18 161.17 161.32 161.18 161.17 0.144 OU2B 3 8.00 Kz41 161.225 161.225 161.225 161.224 161.225 161.221 161.221 161.221 161.221 161.220 161.221 161.220 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221 161.221	80.0 Kx42 226.11 181.00 167.57 162.78 166.26 176.36 188.29 186.30 188.59 226.11 161.22 64.89 3 8.00 Kz42 161.069 161.2178 161.203 161.214 161.219 161.231 161.231 161.231 161.231 161.231 161.231 161.231 161.231 161.231 161.240 161.240 161.240 161.24 161.24	0.10 Kx46 159.76 159.99 160.36 160.73 160.99 161.22 162.27 163.13 163.49 163.80 159.76 4.042 3 0.01 Kz46 171.362 166.218 163.772 162.395 161.718 164.221 159.774 158.836 158.789 171.36 158.789 171.36	14.00 Kx51 163.14 161.63 161.25 161.17 161.21 161.22 163.44 164.74 165.87 166.90 161.15 5.746 3 1.40 Kz51 161.638 161.231 161.231 161.233 161.231 161.233 161.21 161.171 161.168 161.171 161.168 161.171 161.169 161.170	3 80.0 Kx52 351.84 226.15 187.69 171.07 164.74 161.22 162.42 181.36 195.31 204.92 211.82 351.84 161.22 190.6 3 8.00 Kz52 164.603 160.657 164.60 160.66 160.66	6.08 Kx53 171.07 163.43 162.07 161.56 161.35 161.22 160.97 161.10 161.34 161.56 161.75 171.07 160.97 10.104 3 0.61 Kz53 163.215 161.251 161.351 161.240 161.222 161.155 161.222 161.155 161.222 161.155 161.222 161.155 161.225 161.155 161.225 161.155 161.225 161.155	6.08 6.08 Kx54 183.87 168.58 164.72 162.81 161.22 164.93 172.70 181.00 189.01 160.12 28.88 OU2B 3 0.61 Kz54 163.600 161.221 164.309 161.227 161.221 161.429 161.221 161.222 161.223 161.224 161.225 161.225 161.226 161.056 161.056 161.056 163.600 161.055	Kx55 245.30 189.95 172.76 165.46 162.72 161.63 168.70 173.65 176.30 245.30 161.22 84.07 0U2B 3 4.40 K255 161.233 161.224 161.225 161.224 161.224 161.225 161.218 161.214 161.214 161.214 161.215 161.214 161.215 161.214 161.215 161.214 161.215 161.216 161.217 161.218 161.214 161.215 161.216 161.217 161.218 161.219	3 24.96 Kx56 241.10 193.93 171.38 163.73 161.22 201.56 333.87 531.62 599.42 1531.62 599.42 161.22 438.2 0U2B 3 2.50 K256 163.586 160.801 160.737 160.918 161.022 161.949 161.651 162.955 163.201 163.341 163.59 163.59 163.341 163.59 160.74	12.46 Kx57 218.07 191.59 176.45 167.67 163.69 161.22 162.82 187.65 212.14 232.83 250.20 161.22 88.97 3 1.25 K257 161.324 161.223 161.223 161.224 161.223 161.225 161.222 161.222 161.222 161.223 161.223 161.224 161.223 161.225 161.223 161.226 161.223 161.221 161.223 161.222 161.223 161.223 161.223 161.224 161.223 161.324 161.324 161.324 161.223	12.46 Kx58 288.07 220.08 188.49 172.08 165.19 161.22 167.58 220.40 275.06 323.91 366.81 161.22 205.6 3 1.25 Kz58 162.480 161.221 161.364 161.283 161.248 161.116 161.103 161.098 162.48 161.09	12.46 Kx59 208.09 167.01 161.69 160.61 161.22 169.68 187.46 200.82 210.85 218.66 160.49 58.18 3 1.25 K259 160.409 160.409 160.401 161.57 161.57 161.57 161.57 158.79 2161.57 158.79 261.573 161.57 158.79 2.781	12.46 Kx60 211.84 169.13 163.47 161.92 161.46 161.22 161.45 162.08 162.79 163.57 211.84 161.01 50.83 OU2B 3 162.538 161.409 161.22 161.409 161.22 161.409 161.22 161.025 161.220 161.221 161.025 161.222 161.021 160.985 160.973 162.54 160.97 15.64	0.10 Kx18 161.85 161.72 161.58 161.33 161.22 160.65 160.10 160.15 160.64 161.85 160.10 1.745 0U28 4 0.01 Kz18 163.521 162.580 162.509 161.611 161.390 161.991 163.803 165.825 167.88 160.91	0.50 Kx32 161.21 161.22 161.22 161.22 161.22 161.23 161.21 161.23 161.12 161.12 161.23 161.23 161.07 0.152 4 0.05 Kz32 163.706 161.230 161.230 161.230 161.220 161.220 161.221 161.339 161.387 161.387 161.396 163.71 161.22 2.486	0.10 Kx33 161.96 161.78 161.61 161.34 161.22 160.57 159.64 159.15 159.16 159.16 159.01 2.955 OU2B 4 0.01 Kz33 161.299 161.223 161.229 161.222 161.221 161.221 161.211 161.190 161.197 161.30 161.19	2.50 Kx49 161.29 161.27 161.26 161.24 161.23 161.22 161.16 161.05 160.96 160.90 160.85 0.441 4 0.25 Kz49 161.29 161.29 161.429 161.222 161.21 161.222 161.057 161.048 161.042 162.99 161.04	0.25 Kx50 160.89 161.05 161.13 161.17 161.22 161.47 161.22 161.47 161.84 161.88 161.88 161.88 161.88 161.88 161.88 163.87 167.824 163.367 162.138 161.606 161.378 161.222 160.817 160.566 167.82 160.566

TABLE 1 Continued ALAMEDA POINT - OU2B: SENSITIVITY ANALYSIS RESULTS SUMMARY

	GHB K Parameter Sensitivity Analysis																											
Laye	· 1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3	3	3	4	4	4	4	4	4
K: Ft/D	2.50	2.00	2.10	2.00	1.20	1.20	2.00	3.20	0.21	2.25	2.00	1.00	4.00	1.50	1.06	1.00	25.0	4.25	8.00	1.00	10.5	7.50	0.50	0.50	0.50	0.55	0.50	0.50
Multiplier	GHB K 2	GHB K 3	GHB K 4	GHB K 5 (GHB K 11	GHB K 12	GHB K 13	GHB K 14	GHB K 15 G	GHB K 16	GHB K 21	GHB K 22	GHB K 23	GHB K 24 0	GHB К 25 🛛 (GHB K26	GHB K 31	GHB K 32	GHB K 33	GHB K 34	GHB K 35	GHB K 36	GHB K 41	GHB K 42	GHB K 43	GHB K 44	GHB K 45	GHB K 46
0.1	163.631	161.269	161.131	161.131	161.247	212.628	161.382	185.424	161.270	161.827	161.332	161.212	167.289	166.432	161.186	161.285	162.135	161.493	216.327	218.956	403.887	193.502	161.296	161.234	161.608	172.377	161.220	161.208
0.3	162.198	161.228	161.151	161.158	161.239	169.095	161.343	173.227	161.253	161.565	161.300	161.213	164.244	164.434	161.195	161.250	161.483	161.426	180.927	193.506	192.344	165.009	161.247	161.227	161.344	166.717	161.221	161.211
0.5	161.692	161.222	161.183	161.177	161.234	163.562	161.307	166.657	161.244	161.409	161.273	161.216	162.509	162.969	161.203	161.233	161.338	161.361	168.845	176.797	167.894	161.988	161.233	161.224	161.278	163.593	161.222	161.214
0.7	161.434	161.221	161.203	161.195	161.228	161.991	161.270	163.174	161.233	161.310	161.250	161.219	161.609	161.970	161.210	161.225	161.273	161.302	163.828	166.805	162.424	161.338	161.227	161.223	161.245	161.965	161.222	161.218
0.85	161.311	161.221	161.214	161.210	161.225	161.493	161.246	161.828	161.227	161.259	161.236	161.220	161.305	161.492	161.217	161.221	161.243	161.262	162.073	162.802	161.367	161.224	161.224	161.222	161.232	161.394	161.222	161.219
1	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222	161.222
2	160.955	161.236	161.248	161.292	161.207	160.874	161.086	166.109	161.203	161.130	161.159	161.234	163.311	163.496	161.257	161.237	161.161	161.012	162.684	188.752	164.086	161.679	161.216	161.221	161.194	165.341	161.223	161.237
4	160.814	161.275	161.264	161.390	161.188	160.976	160.902	186.332	161.195	161.143	161.093	161.257	169.505	179.742	161.314	161.272	161.130	160.773	168.540	308.198	167.831	162.276	161.213	161.221	161.180	180.998	161.222	161.266
6	160.767	161.321	161.270	161.475	161.175	161.059	160.783	205.357	161.196	161.177	161.059	161.282	174.164	201.593	161.360	161.296	161.119	160.676	172.187	425.817	169.532	162.558	161.212	161.220	161.175	196.581	161.223	161.292
8	160.743	161.372	161.272	161.550	161.163	161.117	160.705	221.442	161.199	161.206	161.037	161.307	177.472	224.334	161.400	161.312	161.113	160.658	174.514	523.972	170.485	162.719	161.212	161.220	161.173	210.340	161.222	161.317
10	160.729	161.426	161.275	161.623	161.155	161.167	160.649	234.983	161.201	161.228	161.023	161.330	179.892	246.310	161.436	161.324	161.110	160.684	176.115	604.087	171.094	162.823	161.211	161.219	161.171	222.293	161.223	161.338
Max	163.63	161.43	161.27	161.62	161.25	212.63	161.38	234.98	161.27	161.83	161.33	161.33	179.89	246.31	161.44	161.32	162.14	161.49	216.33	604.09	403.89	193.50	161.30	161.23	161.61	222.29	161.22	161.34
Min	: 160.73	161.22	161.13	161.13	161.15	160.87	160.65	161.22	161.19	161.13	161.02	161.21	161.22	161.22	161.19	161.22	161.11	160.66	161.22	161.22	161.22	161.22	161.21	161.22	161.17	161.22	161.22	161.21
Range	2.903	0.205	0.143	0.492	0.092	51.75	0.733	73.76	0.075	0.697	0.309	0.118	18.670	85.09	0.250	0.103	1.025	0.835	55.11	442.9	242.7	32.280	0.085	0.015	0.437	61.07	0.003	0.130
Notes	OU2B	OU2B	OU2B		OU2B	OU2B					OU2B	OU2B					OU2B	OU2B					OU2B	OU2B				

GHB HEAD Parameter Sensitivity Analysis

Layer	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3	3	3	4	4	4	4	4	4
Head:	5	4	4	2.978	1	1.6	3	-2	2	1	1	3	-2	-2	1	1	1.6	0	2	-2	-1	1.4	-3	-2	-3	-3	-2	-3
Multiplier	GHB GW 2	GHB GW 3	GHB GW 4	GHB GW 5	GHB GW 11	GHB GW 12	GHB GW 13	GHB GW 14	GHB GW 15	GHB GW 16	GHB GW 21	GHB GW 22	GHB GW 23	GHB GW 24	GHB GW 25	GHB GW 26	GHB GW 31	GHB GW 32	GHB GW33	GHB GW 34	GHB GW 35	GHB GW 36	GHB GW 41	GHB GW 42 G	HB GW 43	GHB GW 44 G	HB GW 45 G	HB GW 46
-1	162.81	161.88	162.41	161.09	161.20	187.92	161.10	161.50	161.20	161.16	161.05	161.21	161.43	161.28	161.21	161.25	162.71	161.08	166.54	162.81	181.90	186.36	161.16	161.21	161.07	161.74	161.23	161.23
-0.8	162.44	161.68	161.86	161.12	161.20	177.16	161.12	161.35	161.20	161.17	161.08	161.22	161.35	161.24	161.21	161.24	160.44	161.10	163.92	162.23	174.55	177.60	161.17	161.21	161.10	161.58	161.23	161.22
-0.6	162.10	161.51	161.47	161.14	161.21	169.12	161.15	161.24	161.20	161.18	161.12	161.22	161.29	161.21	161.21	161.23	159.16	161.13	162.07	161.78	168.81	170.70	161.18	161.22	161.13	161.45	161.22	161.22
-0.4	161.78	161.37	161.23	161.17	161.21	163.78	161.17	161.19	161.21	161.19	161.15	161.22	161.25	161.20	161.21	161.22	158.86	161.16	161.01	161.46	164.67	165.68	161.20	161.22	161.16	161.35	161.22	161.22
-0.2	161.49	161.28	161.15	161.19	161.22	161.15	161.20	161.18	161.22	161.21	161.19	161.22	161.22	161.20	161.22	161.22	159.55	161.19	160.73	161.28	162.14	162.52	161.21	161.22	161.19	161.27	161.22	161.22
0	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22	161.22
0.2	160.98	161.20	161.45	161.25	161.23	164.00	161.25	161.31	161.23	161.24	161.26	161.22	161.24	161.25	161.23	161.22	163.87	161.25	162.50	161.30	161.90	161.79	161.24	161.22	161.25	161.20	161.22	161.22
0.4	160.77	161.22	161.84	161.28	161.23	169.48	161.28	161.45	161.24	161.26	161.29	161.23	161.27	161.30	161.23	161.23	167.51	161.29	164.55	161.51	164.18	164.21	161.25	161.23	161.29	161.20	161.22	161.22
0.6	160.59	161.27	162.39	161.31	161.24	177.66	161.30	161.64	161.25	161.29	161.33	161.23	161.33	161.36	161.24	161.24	172.13	161.32	167.38	161.85	168.07	168.48	161.26	161.23	161.32	161.23	161.22	161.22
0.8	160.44	161.37	163.10	161.33	161.24	188.55	161.33	161.88	161.26	161.31	161.37	161.23	161.40	161.44	161.26	161.25	177.73	161.35	170.98	162.32	173.54	174.60	161.27	161.23	161.36	161.29	161.22	161.22
1	160.31	161.50	163.96	161.36	161.24	202.12	161.36	162.17	161.27	161.34	161.40	161.23	161.50	161.53	161.27	161.26	184.30	161.39	175.37	162.92	180.62	182.56	161.29	161.23	161.40	161.37	161.22	161.22
Max:	162.81	161.88	163.96	161.36	161.24	202.12	161.36	162.17	161.27	161.34	161.40	161.23	161.50	161.53	161.27	161.26	184.30	161.39	175.37	162.92	181.90	186.36	161.29	161.23	161.40	161.74	161.23	161.23
Min:	160.31	161.20	161.15	161.09	161.20	161.15	161.10	161.18	161.20	161.16	161.05	161.21	161.22	161.20	161.21	161.22	158.86	161.08	160.73	161.22	161.22	161.22	161.16	161.21	161.07	161.20	161.22	161.22
Range:	2.495	0.683	2.811	0.274	0.043	40.974	0.257	0.984	0.072	0.181	0.354	0.019	0.277	0.326	0.057	0.041	25.439	0.308	14.639	1.701	20.680	25.140	0.130	0.019	0.325	0.539	0.005	0.007
Notes	OU2B	OU2B	OU2B		OU2B	OU2B					OU2B	OU2B					OU2B	OU2B					OU2B	OU2B				

	RECHARG	E Sensitivi	ty Analysis		CONSTANT	HEAD Sens	sitivity Anal	ysis
Layer	1	1	1	Layer	1	1	1	1
Ft/Day:	0.002236	0.001444	0.002362	Head Range	4.77' to 13.68'	12.24' to 9.57'	9.45' to 6.98'	6.84' to 1
Multiplier	Recharge2	Recharge3	Recharge4	Multiplier	CH 1	CH 2	CH 3	CH 4
0.5	1,443.77	249.00	163.91	-1	163.903	161.022	160.806	160.
0.6	964.85	210.62	162.86	-0.8	163.143	161.056	160.882	160.
0.7	595.56	182.62	162.07	-0.6	162.495	161.093	160.962	160.
0.8	337.40	165.04	161.53	-0.4	161.957	161.133	161.044	160.9
0.9	192.02	157.90	161.25	-0.2	161.533	161.176	161.131	161.
1	161.22	161.22	161.22	0	161.222	161.222	161.222	161.
1.1	246.94	175.03	161.45	0.2	161.026	161.271	161.317	161.
1.2	451.23	199.36	161.93	0.4	160.947	161.324	161.417	161.4
1.3	776.15	234.24	162.66	0.6	160.985	161.382	161.520	161.0
1.4	1,223.47	279.69	163.65	0.8	161.141	161.442	161.628	161.
1.5	1,793.22	335.76	164.89	1	161.415	161.505	161.739	161.8
Max:	1,793.22	335.76	164.89	Max:	163.90	161.51	161.74	161
Min:	161.22	157.90	161.22	Min:	160.95	161.02	160.81	160
Range:	1,632.0	177.9	3.673	Range:	2.956	0.483	0.933	1.
Notes	OU2B		OU2B	Notes				

C	ONSTANT	HEAD	Sensitivity	Analysis

ensitivity	Ranking					% of ∣	Base SSR (16	1.22)
Kx	Kz	GHB K	GHB Ft	СН	Recharge	Minimum	Maximum	Rating
(count)	(count)	(count)	(count)	(count)	(count)			
34	44	19	23	4	1	0.0	10.0	slight
7	2	2	5	0	0	10.0	50.0	moderate
8	3	5	0	0	0	50.0	161.2	high
11	11	2	0	0	2	> 161.2		very high

K _H	WHOI	E MO	DEL		OU-28	B ARE	4	
Sensitivity:	L	М	Н	VH	L	М	Н	VH
Layer								
1	15	2	1	1	4	1	1	-
2	8	1	-	-	2	1	-	-
3	6	4	7	10	3	2	4	1
4	5	-	-	-	2	-	-	-
Sub-Total:	34	7	8	11	11	4	5	1

TABLE 2 Kh and Kv Sensitivity Summary by Layer

Kz	WHOI	E MO	DEL		OU-2	B ARE	A	
Sensitivity:	L	М	Н	VH	L	М	Н	VH
Layer								
1	9	1	2	7	5	-	1	-
2	4	-	1	4	2	-	1	-
3	26	1	-	-	10	-	-	-
4	5	-	-	-	2	-	-	-
Sub-Total:	44	2	3	11	19	0	2	0

GHB K	WHOLE	E MODE	L						
Sensitivity:	L	М	Н	VH		L	М	Н	VH
Layer									
1	8	-	2	-		4	1	-	-
2	4	1	1	-		2	-	-	-
3	2	1	1	2		2	-	-	-
4	5	-	1	-		2	-	-	-
Sub-Total:	19	2	5	2		10	1	0	0

TABLE 3 General Head Boundary K and Ft Sensitivity Summary by Layer

GHB Ft	WHOLE	MODE	L		OU-2B	AREA			
Sensitivity:	L	М	Н	VH	L	М	Н	VH	
Layer									
1	9	1	-	-	4	1	-	-	
2	6	-	-	-	2	-	-	-	
3	2	4	-	-	1	1	-	-	
4	6	-	-	-	2	-	-	-	
Sub-Total:	23	5	0	0	9	2	0	0	

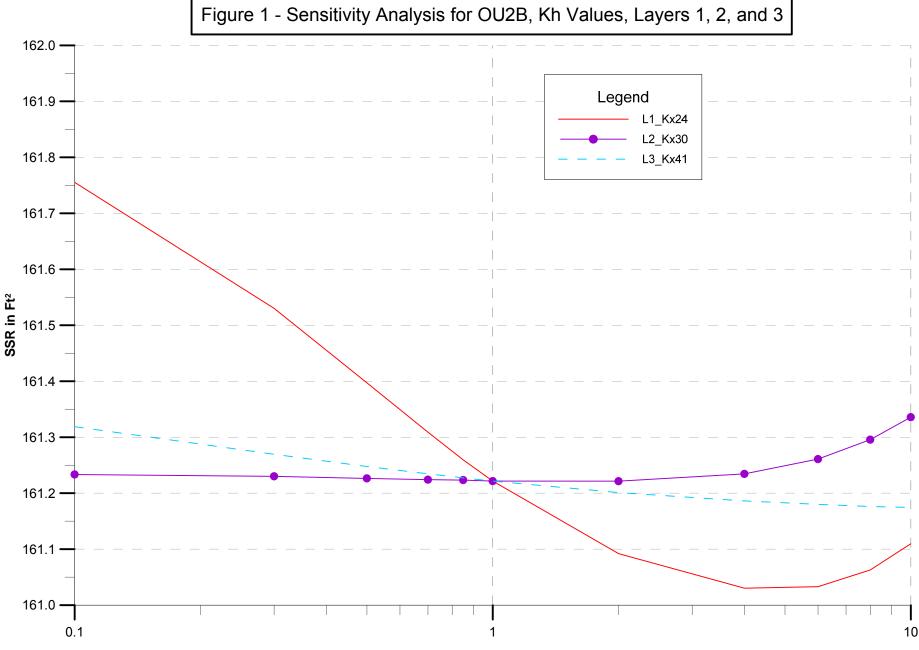
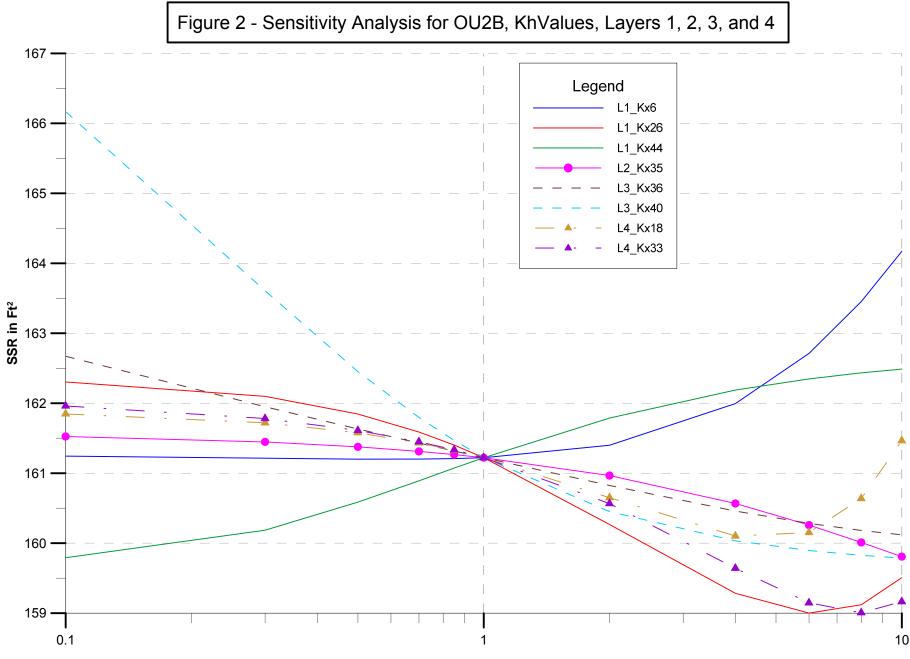

FS MODEL Data Set 1		Set 1				FS MODEL	-	Data Set	s 1 & 2				
TABLE 1	WHOLE	MODE	L				TABLE 1	WHOLE N	ODEL				
	RSS	ARM	#Wells	Range	%	RM		RSS	ARM	#Wells	Range	%	RM
All	161.91	0.608	266	7.06	8.61%	-0.018	All	161.91	0.589	266	7.06	8.35%	-0.042
Layer 1	119.06	0.591	198	7.06	8.38%	-0.063	Layer 1	127.28	0.597	198	7.06	8.45%	-0.105
Layer 2	10.40	0.596	22	5.87	10.16%	-0.158	Layer 2	7.17	0.461	22	5.87	7.85%	-0.181
Layer 3	31.81	0.726	41	4.96	14.63%	0.255	Layer 3	26.82	0.653	41	4.96	13.17%	0.316
Layer 4	0.64	0.339	5	1.07	31.73%	0.137	Layer 4	0.64	0.339	5	1.07	31.73%	0.137
TABLE 1	OU2B Are	a					TABLE 1	OU2B Are	a				
	RSS	ARM	#Wells	Range	%	RM		RSS	ARM	#Wells	Range	%	RM
All	35.17	0.548	73	6.01	9.11%	0.010	All	35.64	0.486	73	6.01	8.09%	-0.065
Layer 1	24.02	0.524	53	6.01	8.71%	0.027	Layer 1	32.33	0.544	53	6.01	9.05%	-0.132
Layer 2	3.98	0.533	10	3.06	17.43%	0.072	Layer 2	1.11	0.275	10	3.06	8.99%	0.113
Layer 3	7.18	0.690	10	2.62	26.35%	-0.142	Layer 3	2.20	0.393	10	2.62	14.99%	0.109

Table 4 Calibration Statistics Comparison

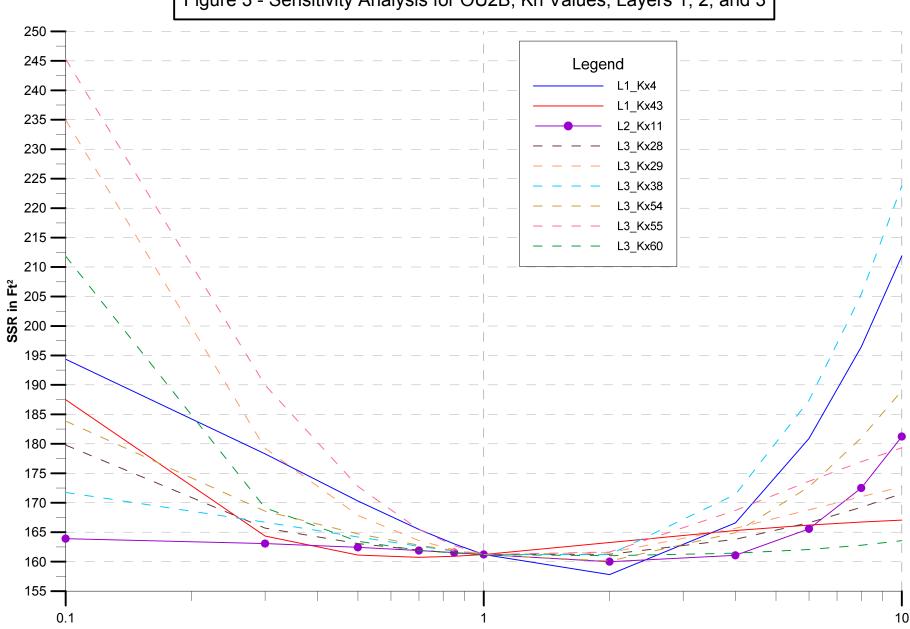
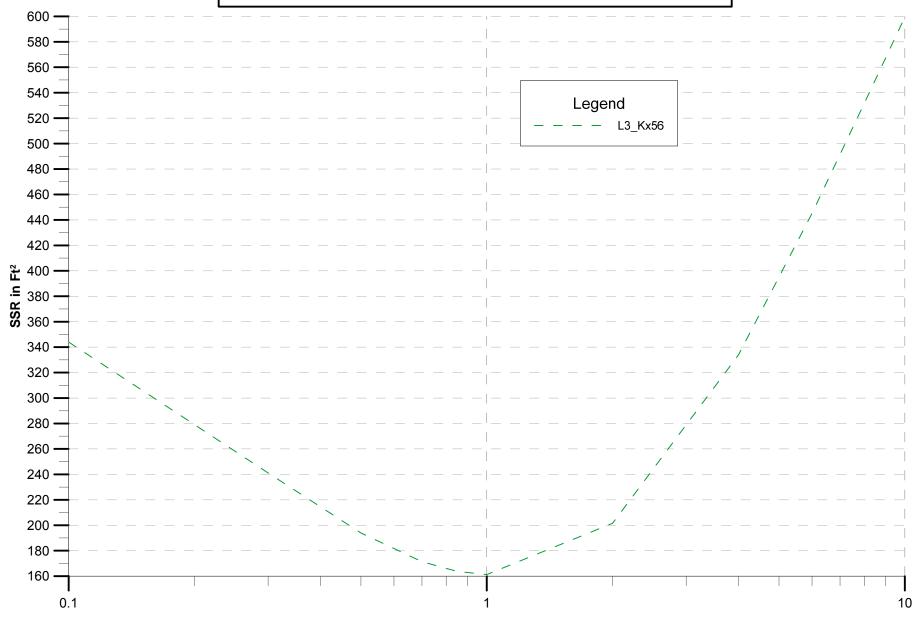

Table 5: Comparison of Average Water Levels for Model Layers (OU-2B Area)

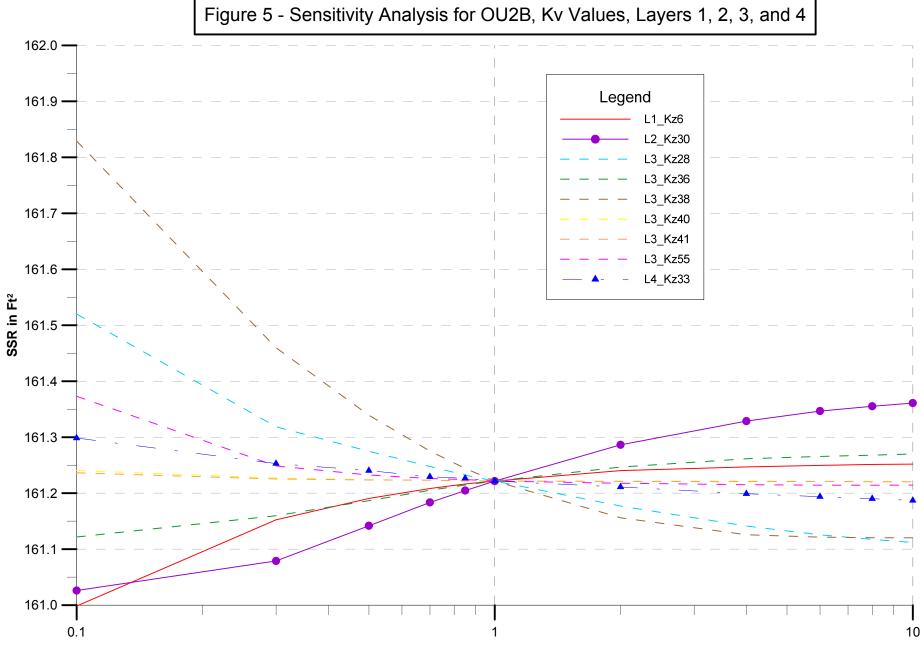
	Average Water b	Levels (feet gs)			
Layer	Period 1 (1991 - 2005)	Period 2 (2006 - 2011)	Difference In Water Levels (feet) (Period 1 - Period 2)		
1	7.06	6.77	0.29		
2	8.02	6.13	1.89		
3	6.85	5.34	1.51		

Figures

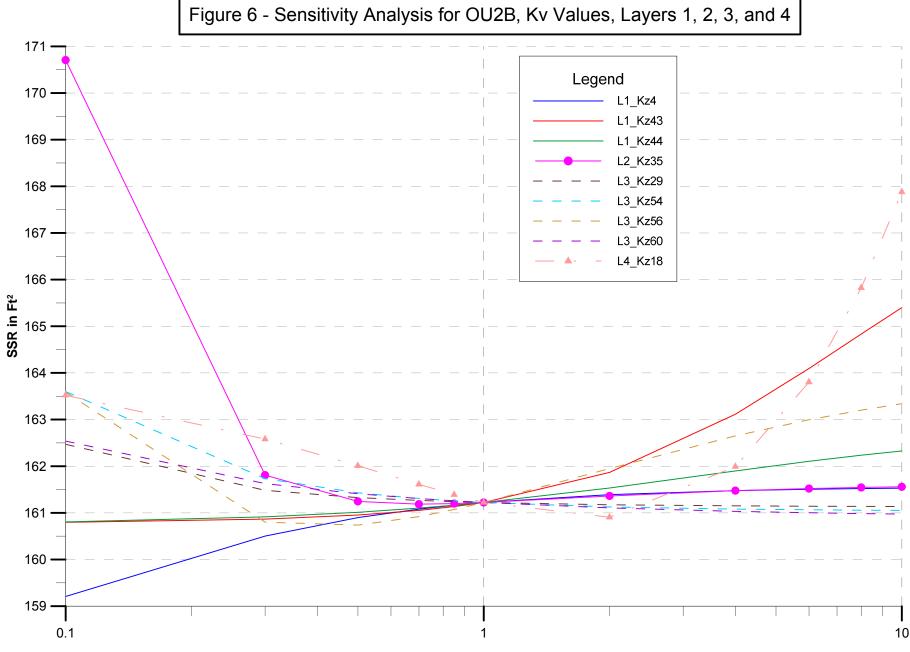
Multiplier: 0.1x - 1.0x - 10x

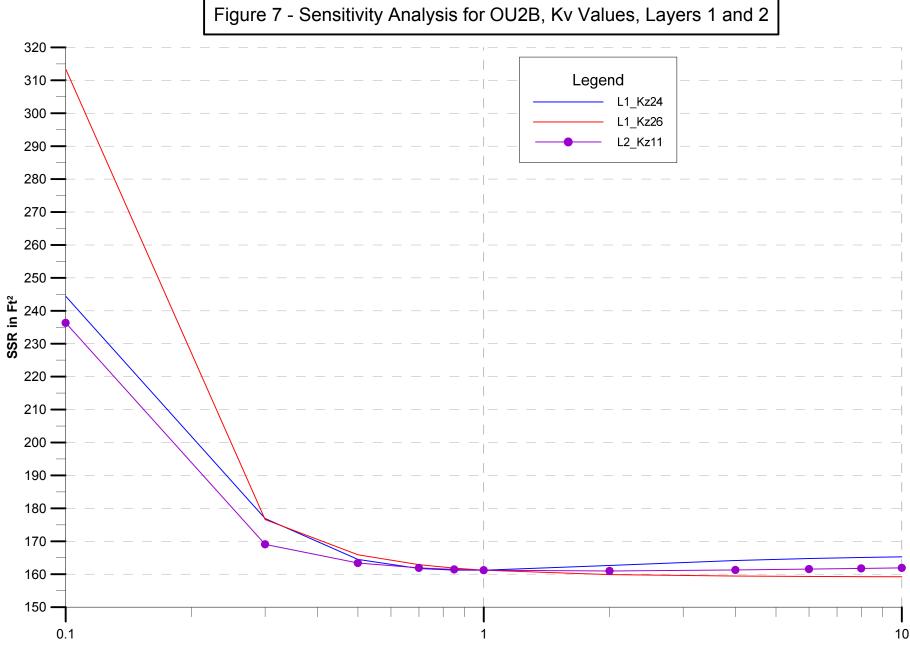
Multiplier: 0.1x - 1.0x - 10x

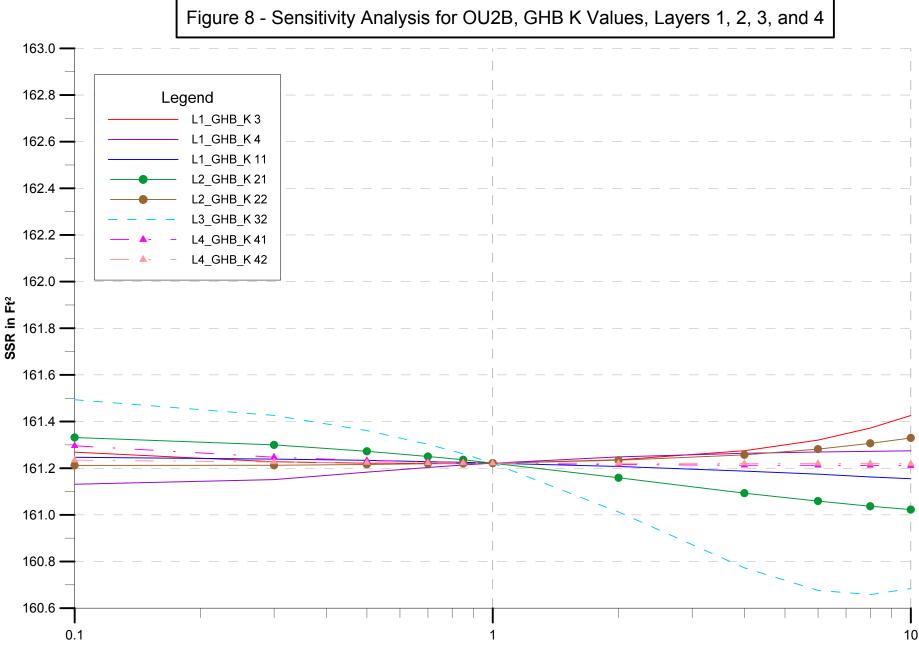



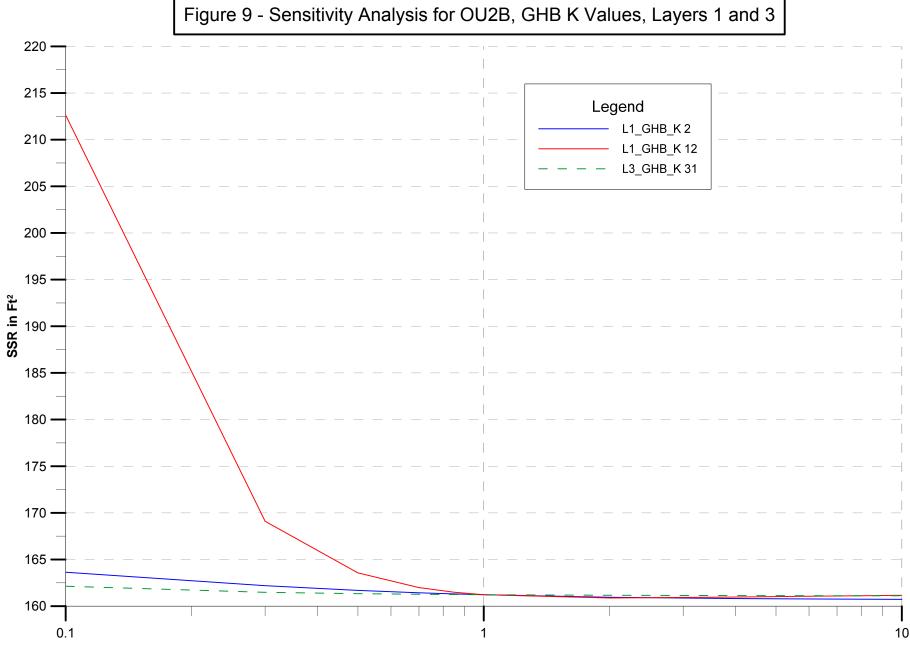

Figure 3 - Sensitivity Analysis for OU2B, Kh Values, Layers 1, 2, and 3

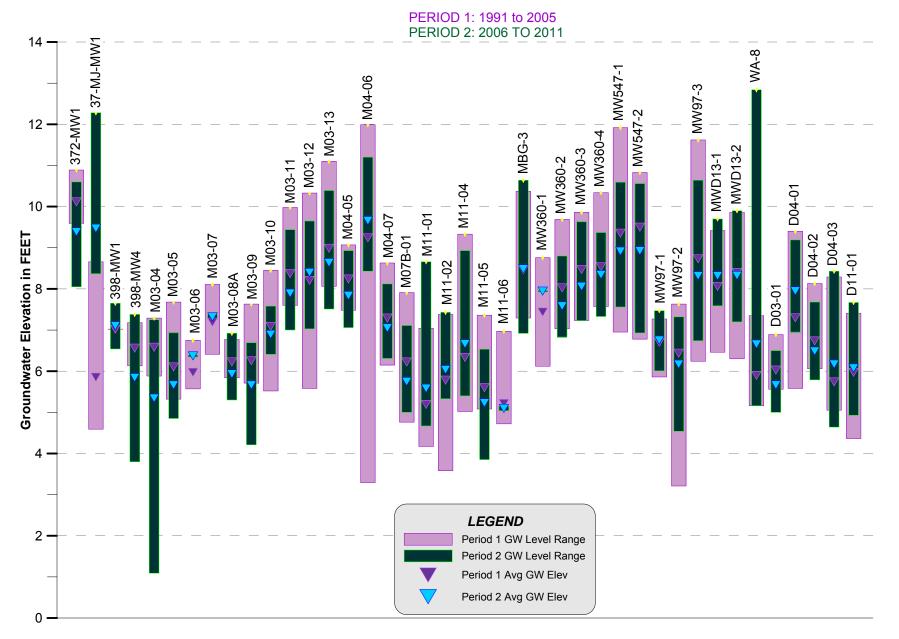
Multiplier: 0.1x - 1.0x - 10x


Figure 4 - Sensitivity Analysis for OU2B, Kh Values, Layer 3


Multiplier: 0.1x - 1.0x - 10x


Multiplier: 0.1x - 1.0x - 10x


Multiplier: 0.1x - 1.0x - 10x


Multiplier: 0.1x - 1.0x - 10x

Multiplier: 0.1x - 1.0x - 10x

Multiplier: 0.1x - 1.0x - 10x

FIGURE 10. ALAMEDA POINT - OU2B GROUNDWATER LEVEL COMPARISON